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180 D.J. IVERS AND R. W. JAMES

This paper considers magnetic fields generated by dynamo action in electrically
conducting fluids under axisymmetric but otherwise very general non-steady con-
ditions, including compressible flow v, variable magnetic diffusivity, general volume
shape (possibly even a union of disconnected conductors) with smooth possibly-moving
boundary. We critically review previous antidynamo results and are forced to
question a number of the more important ones.

Using operator inequalities and maximum principles for uniformly elliptic and
parabolic partial differential equations we construct a number of functions (‘com-
parison functions’) that bound the meridional flux function y. In particular, we derive
the uniform bounds

- X(0), 0<t<T,
<
= > M <{xO) e, iz,
oF 4
R Y,(0) Fy(w) e, >0,
= O
= O where X(f) = max|y| and Y,(¢) = max|y/F (@) at time ¢; F; > 0 being a prescribed
=w function of cylindrical radius w; and equality in the first bound being only possible

at t = 0. These bounds prove that y decays uniformly in space and unconditionally
to zero; by advancing the time origin, that X(¢), Y;(¢#) decay strictly monotonically
to zero; and 7 is an upper bound for the decay time. By using Schauder-type a priort
estimates, spherical harmonic analysis and other techniques, it follows from these
bounds that other field parameters, such as the meridional vector field B, the
external multipole moments, the toroidal current density and the net outward surface
flux, all decay to zero (but not all uniformly). The decay-time bound 7 is directly
related to the magnetic Reynolds number R (based on the speed and radius suprema,
and diffusivity infimum). For free decay (R = 0) it is seen that variations in diffusivity
and volume shape cannot extend the decay time by more than a factor of about 2.5
over the poloidal free-decay time in a fixed uniform sphere (7., = n7%). However,
for large R, 7 may take very large values (for example 7 2 10" diffusion time units
when R = 10%).

The same comparison function approach applied to the azimuthal field parameter
A = By/w leads to pointwise decay bounds analogous to those given above provided
RV v and 07/dw are small (see (5.16)); but, as for y, the decay-time bounds may
sometimes be exceedingly large. These decay bounds for 4 also assume that given the
decay of By, the rate of generation, (vyB,,4) say, of 4 by differential rotation’
shearing the B, -lines, is reasonably modelled by a uniformly decaying function. For
the special case of free decay in a uniform fluid (where v = d9/0w = (v;B, 4) = 0)
it is seen that variations in volume shape cannot extend the free-decay time by more
than a factor of about 2.5 over the toroidal free-decay time in a fixed uniform sphere
(Tyor =~ (1.431)72); and for a uniform incompressible fluid (where Vv = 95/dw = 0,
but (vyB,,A) #0) it is seen that A decays uniformly pointwise to zero. For
compressible non-uniform fluids we prove more generally (i.e. regardless of V- and
dn/dw) that |A|,, the volume integral of |4|, cannot grow above a finite bound
determined by (v;B,, 4). When (v B, A) is negligible || 4], is shown to decay strictly
monotonically. And if In|4| does not develop negative w-gradients steeper than
In (constant/¢?) for large ¢, then || 4|, decays to zero beneath a comparison function,
which again may decay extremely slowly.

One of our main conclusions is that axisymmetric antidynamo theorems allowing
compressible flow in non-uniform fluids have not yet been shown to be generally
effective, in the sense that they do not ensure decay on timescales that do not
significantly exceed the relevant astroplanetary timescales, unless the compressibility
and non-uniformities are specially restricted (as, for example, by Backus (Astrophys.
J. 125,500 (1957))). Our most important results do not rely on any velocity boundary
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AXISYMMETRIC ANTIDYNAMO THEOREMS 181

conditions and therefore apply directly to non-velocity mechanisms such as the
Nernst-Ettingshausen thermomagnetic effect. The results herein include previously
established antidynamo theorems as special cases, and the methods provide alternative
proofs of, and strengthen, known steady antidynamo theorems.

1. INTRODUCTION

In 1919 Larmor (1919) suggested that the.self-excited dynamo process might be responsible
for the short- and long-term behaviour of cosmic magnetic fields. Fifteen years later Cowling
(1934) published the first antidynamo theorem (a.d.t.) showing the impossibility of a steady
axisymmetric dynamo, where both magnetic field and flow lines were in meridional planes.
Since then generalizations have been made of the Cowling theorem and other a.d.ts have been
discovered. Such theorems preclude in various senses the maintenance against ohmic decay of
self-exciting fluid dynamos with certain symmetries or insufficiently ‘vigorous flows’ (see
Moffatt (1978) for references). The usual proofs of several of these theorems, especially under
non-steady conditions, depend critically on the flow » being incompressible, i.e. V- =0, a
fact that has led Todoeschuck & Rochester (1980) to suggest that compressibility in the Earth
and Saturn may be sufficient to vitiate the Cowling theorem. This suggestion highlights the
need to determine what modifications must be made to a.d.ts in the presence of compressibility
and otherwise variable conditions. If a small amount of compressibility does assist field
maintenance, this may facilitate symmetric dynamo modelling of planetary and cosmic
magnetic fields.

The present paper treats the axisymmetric problem as defined in § 2. In §3 we review previous
attempts to generalize the Cowling theorem to compressible flows and variable conductivity,
and indicate that no such generalization has previously been completely achieved. The
remainder, and main part, of the paper shows:

(i) the flux function y of the magnetic field decays pointwise to zero regardless of
compressibility, variable conductivity or permeability, volume-shape or moving boundaries;

(ii) decay to zero of related parameters, e.g. multipole moments and meridional vector field;

(iii) that the azimuthal component By of the magnetic field decays pointwise to zero if the
compressibility and conductivity or permeability variations are suitably restricted;

(iv) that the volume integral of |By|/w, denoted [4[,, cannot increase above a bound
determined by the strength of the differential rotation and meridional magnetic field;

(v) that in the absence of differential rotation or a meridional field, then, ||4], decays;
and:

(vi) determines seemingly reasonable conditions under which the decay of ||4], is to
Zero;

(vii) obtains upper bounds on decay times of the meridional and azimuthal fields.

This last point (vii) is an important, but usually neglected aspect of a.d.ts. For even if decay
to zero is shown to occur, an a.d.t. does not rule out field maintenance over time spans of
physical interest if the decay time is much greater than the characteristic time of the particular
astroplanetary field being studied. It will be seen in this paper that axisymmetric a.d.ts have
not yet been proven effective in the foregoing sense in the presence of compressibility.

Some of our main conclusions rely on the mathematical theories of maximum principles and
a priori estimation for second order elliptic and parabolic partial differential inequalities and
equations. As background references for these topics, we recommend the works of Protter &
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182 D. J. IVERS AND R. W. JAMES

Weinberger (1967) (hereinafter P.W.; especially recommended for readers unfamiliar with
maximum principles), Gilbarg & Trudinger (1977) and Friedman (1964). While maximum
principles are sometimes couched in sophisticated mathematical jargon, they are basically
simple implications of the usual properties of the derivatives of a function at its local maxima,
and the relating of these derivatives via the differential equation or inequality.

2. PROBLEM AND FIELD DESCRIPTIONS
2.1. The non-uniform, compressible, axisymmetric induction problem

We consider magnetic fields arising from electric currents inside a fluid moving with velocity
field », having possibly non-uniform electrical conductivity o, and occupying volume V(¢)
at time ¢ V,, denotes all space; V(f) the exterior of V(f); S() the surface of V(¢) and n a
unit outward normal. We use cartesian and polar coordinates related by (x;;
1=1,2,3) = (x,y,z) = (wcos @, wsin @, rcos 0), where w = rsin . Unit reference vectors and
components are denoted e,, v, (polar), v; (cartesian), etc. It will be important for applications
of the theorems in §§4, 5 to pay particular attention to such things as the boundedness, continuity
and differentiability of the functional models representing the various physical fields. Choosing
appropriate non-negative constants a,%,,%,, Ky, ..., K;, we adopt the following physically
reasonable conditions.

(i) V and V are connected in the sense that any two points in ¥ (or V) are joinable by a
curve lying everywhere inside ¥V(V). V is non-conducting and neutral. These assumptions are
clearly true in many stellar and planetary applications where V is simply a sphere and V
free space. (For generalizations, see §6, G.2, G.3, G.5.) Vis confined to a finite region of space,
say 0 < 7 < ain V for all ¢. § is not necessarily spherical, may be moving, but is smooth: class
C2 is sufficient (Friedman 1964, p. 86). The finite extent of V ensures, among other things,
that V cuts the z-axis, extends to infinity, and that in quasistationary conditions

|B| =0(r3) as r—>o0. (2.1)

(ii) The magnetic permeability g is everywhere the free space value y,,. (For generalization,
see §6, G.1.)
(iii) V, o, v, B are axisymmetric. This requires, in particular, that

U¢=B¢=UW=BW=O at @w=0. (2.2)
(iv) The electrical conductivity o may be discontinuous across S. But in V, the magnetic
diffusivity # = 1/p0o has continuous first derivatives in time and second derivatives in space,

and
O<pos<y<n <o,

Vgl < K,moa?, |[O9/0l < Kypia2. (2.34a,b)

Any axisymmetric scalar function that is differentiable throughout V' must have zero w-gradient
on the z-axis. So, if 0%9/0w? exists, then

/0w =0(w) as w->0. (2.4)

(Note that the same is not generally true for polar components of vectors. For example, B,
is not necessarily even differentiable with respect to x or y at w = 0.) We further assume that
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(2.4) holds uniformly in z and ¢ It then follows by conjunction with (2.3a) that there exists
constant K, such that
|0y /0w| < Kynppa 2w in V. (2.5)

Equation (2.5) is used when discussing the decay of By but is not needed when proving decay
of the meridional components of B.
(v) The flow » has continuous first space-time derivatives, and

o]l < K,, |Vo| < K,Kgat, [0v;/0Y < K,Kgnoa=2. (2.64a,b,¢)

(vi) Surface currents are not present, and consistent with (ii), B is therefore continuous across
S. Additional to differentiability inherent in the pre-Maxwell equations (vii) we assume only
that the second cartesian derivatives of B exist continuous in V. This is a weaker-than-normal
assumption, used in (vii) and §2.2.

(vii) Consistent with condition (ii), the electromagnetic field is governed by the quasi-
stationary pre-Maxwell equations

VxB=yp,j, VXE=—0B/0t, V-B=0, (2.7a,b,¢,)
and the Ohm law j=oc(E+vxB). (2.8)

Here, j is the current density and E the electric field. Equations (2.7), (2.8) and condition (vi)
lead to the induction equation in V,

0B/ot =V x (—yVxB+vxB), (2.9)
which allows for variable #; and the current-free condition in V:
VxB=0. (2.10)

We introduce the dimensionless variables

r=rfa, 0<r <1 inV, (2.11q)
o =wfa, 0<w <1 inlV, (2.115)
v = ,t/a®, the diffusion timescale, (2.11¢)
v=v/K, 0<[|p|<1 inV, (2.11d)
N =0/1 LSy <n/n inV; (2.11¢)

and hereinafter suppress the primes. With this scaling, constraints (2.3), (2.5), (2.6) simplify
to the dimensionless forms :

Vgl < K,, [09/04 < Ky; (2.12a, b)
[on/0w| < K in V; (2.13)
Vol < K5, [00;/04 < K. (2.144,b)

As already indicated, not all of conditions (i) to (vii) are necessary. Generalizations of lesser
interest will be discussed in § 6. Our main aim in this paper is to determine whether or not the B
defined above, and various parameters derived from B, decay to zero; and if so, what bounds
can be put on the decay rate.
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184 D.J.IVERS AND R. W. JAMES

2.2. The meridional field

If B, is the meridional component of B, then (2.7¢) and the axisymmetry of B imply
V-B,, = 0. This allows introduction of the flux function y(w, z, f) such that

B, = VX (xe,/w). (2.15)

By the Stokes theorem 2my(w, z,¢) is the flux of B, or B through any surface capping the
azimuthal circle through (@, z), provided y is adjusted to vanish at w = 0. Consistent with
conditions (ii) and (iv) (but, more generally, see §6, G.1), the first derivatives of y are
continuous in V,,, and the second derivatives in V, ¥, but not across $ in general. Condition
(vi), and (2.1), (2.2) for B,, and (2.15), imply

Xx=0("1) as r—>o0; x=0(®? as w-0. (2.164,b)
The ¢-components of (2.74,5) and (2.8), scaled according to (2.11), show that y satisfies

Pxy=0 in/V, (2.17)
29 0 ,
h = 2_ 1L V= — .
where P =9V ( ew+Rv) \Y 3 (2.18)

and R = aK, /9, is the magnetic Reynolds number based on the speed supremum; and, from
the ¢-component of (2.10), y satisfies

Ex =0, inV, (2.19)
where &= V2~—~2——a*. (2.20)
w 0w

2 and & are parabolic and elliptic differential operators, respectively. The property 5 = 1
(2.11¢) is important in that it permits use of theorems for uniformly or strictly, or both, elliptic
and parabolic operators (P.W.; Gilbarg & Trudinger 1975; Friedman 1964).

2.3. The azimuthal field

If B is differentiable throughout V, then axisymmetric condition (iii) (2.2) for B, implies
B, = O(w) as w—>0. Furthermore, if B is twice differentiable, as in condition (vi), then
application of condition (iii) to the relation between 92B,/0w® and the second cartesian
derivatives of B, implies 0?B,/0w* = 0 at w = 0. And near w = 0,

By(w,z) = A,(z) w+ 4,(w, z) w?, (2.21)

where 4, = 0B,/0w at w = 0, and 24, = 0*B,/0w” at some radius between 0 and w. Equation
(2.21) allows us to define A = B;/w with the property

(a_A)mzo = lim [M] = A4,(0,z) = 0. (2.22)

ow @0 w

The usefulness of (2.22) will be appreciated in §5.2. It is a slightly more general property than
that noted by Backus & Chandrasekhar (1956), who assumed B thrice differentiable, leading
to the stronger property 04/0w = O(w) as w— 0.
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The ¢-component of the induction equation (2.9) shows that in V,

(240) A= (v, By A), (2.23)
_ 2y 0
where 2=9Vi+ %—em+V77——Rv 'V—a (2.24)

is a uniformly parabolic differential operator;

_ 20 )
(= RV v, (2.254)
and (vyBpA) = —RB,"V(v,/®). (2.250)

Equation (2.23) may be written in divergence form:

oA _

= = 0. (2.26)

v

V-L—Z—ZV(wZA) —RoA+R m]

The general solution of the meridional component of (2.10) is 4 = f{¢) /w?. Since Vis connected
and intersects the z-axis (§2.1(i)) and 4 is continuous across § (§2.1 (vi)), it follows that

A=0 in V andon S (2.27)

The source terms ¢4 and (v, By, A) make (2.23) manifestly different from (2.17) for y. The
term c¢A arises because of compressibility and non-uniform diffusivity. We will later require
that ¢ be bounded. In fact, with the space—time inf and sup of ¢ denoted by ¢; and ¢, it follows
from (2.13) that

¢, < 2K;+3RK;, ¢

1

> —2K,— 3RK,. (2.284, b)

The term (vyB,, A) represents the rate of generation of azimuthal field from meridional field
by differential rotation. Apart from the considerations of Childress (1969), this coupling term
appears to have been neglected by other authors of a.d.ts. Its presence will be allowed for,
as far as possible, in §5.

3. BRIEF REVIEW OF PREVIOUS RESULTS

The essence of the Cowling theorem is that self-exciting axisymmetric dynamos cannot be
maintained no matter how much energy is available in the velocity field. The word ‘theorem’
is often used loosely in a.d.t. contexts: in reality, the Cowling theorem embodies several
theorems, proofs and part proofs, with assumptions and definitions of field maintenance that
differ from author to author. The style and terminology of proof also varies, some authors using
‘energy-type’ integral methods, others mathematical properties of partial differential equations,
and others arguments about the neutral lines (n.l.) of B, (i.e. where B, = 0). In his original
paper, Cowling (1934) used both a neutral line neighbourhood (n.l.n.) argument and a very
simple maximum principle (m.p.) for elliptic partial differential equations. Whilst n.1. and m.p.
proofs differ in mathematical emphasis, they are otherwise closely related. For, as is easily shown
from (2.15), the maxima and minima of y are O-type neutral points of B, and vice versa. (X-type
neutral points correspond to saddle points.)

The question of whether a Cowling-like theorem holds independently of variable conductivity
or independently of compressibility is not new. Several definite results are known. In particular,
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186 D. J. IVERS AND R. W. JAMES

in steady conditions, when a.d.ts are equivalent to mathematical uniqueness, the only solution
of the problem defined in §2 (and variants thereof) is B =0 (Cowling 1934; Backus &
Chandrasekhar 1956; Lortz 1968, and see §4.2.3 and § 5.4 herein). Even in this steady case
the trail is confused by incomplete arguments, and conclusions that have waited to be
substantiated by later authors. For a detailed historical critique, see Ivers (1984). Here we deal
in detail only with the non-steady problem from which corresponding steady results follow as
special cases.

Results are considerably less complete in non-steady conditions. Backus (1957) used
maximum principles to show that irrespective of variable o or compressible flow, the maximum
(minimum) of ¥ cannot increase (decrease) above (below) its initial value. A roughly equivalent
n.l. version of this same result has been given more recently by Parker (1979). The result is
most easily derived from (2.74), (2.15), (2.17) and (2.19), and holds for all local maxima and
minima of ¥, as shown below.

Suppose ¥, is a local maxima of y occurring on an O-type neutral line L, in V. (As in
arguments (i) and (ii) of §4.1, it can be shown that the n.ls of ¥ cannot occur in ¥ or on §
except in the trivial case y = 0 in V_.) Then (Vy), = 0 and (V3%y), < 0, so that by (2.17)

oo/t = (V2x), < 0. (3.1)

(Note that because (Vy), = 0, dx,/0t is the derivative following the motion of Z,.) Hence y,
can never increase; and similarly no local minimum can decrease in time.

Parker (1979) argues further, although without detailed explanation, that when o is constant
(and finite) the magnetic field cannot increase faster than linearly with distance away from
L,, and hence that the n.l. current density

(j¢)0 =—(V%x/pu, @), (3.2)

can never be zero. If one accepts this argument or simply assumes that the result is true, even
for non-uniform o, then (3.1) implies that 9y,/0t < 0, i.e. that all local maxima and minima
of ¥ must strictly decrease in magnitude as time increases.

The rationality of assuming that (j,), is non-zero is not entirely obvious. The contradictory
possibility of higher order O-type neutral lines, where the gradients of B,,,, and hence j, vanish
as well as B, has concerned other researchers and close examination shows that it can be
allowed for in steady conditions by modifying the original Cowling neutral line neighbourhood
(n.l.n.) proof (Cowling 1934; Moffatt 1978; Ivers 1984). It is important to distinguish
between the Cowling n.l.n. proof, which applies the Stokes circulation theorem to a small
meridional disc orthogonally transecting L, (a longitudinal circle), and the non-steady n.l.
arguments, which apply the Stokes theorem to the ‘horizontal’ disc with boundary L,
(compare discs C, and Cy in figure 6.1 of Moflatt (1978)). The n.l.n. argument works in steady
conditions since E4 = 0 then; the non-steady n.l. argument works only with the added proviso
that (j;), # 0, or at least that (j,), is not permanently zero after any finite time. A quirk of
purely n.l. arguments is that in steady conditions, (3.1) leads only to the condition that (j4), = 0,
not to the more complete result j, = 0. Supplementary arguments such as n.l.n. or m.ps are
needed to show j, = 0 away from the n.l.

An interesting variation on the n.l. method for the non-steady problem has recently been
initiated by Hide (1979, 1981). This variation concerns the topology of the null-flux curves
(n.f.c.) of B, i.e. those closed lines on .§ on which B:n = 0. Hide conjectures that dynamo action
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is impossible if] as is true in axisymmetry, there exists an axis passing through all the null-flux
curves. As a basis for this conjecture, several attempts have been made to incorporate the
properties of the null-flux curves into a proof of the non-steady axisymmetric a.d.t. A first
attempt (Hide 1979) assumed that the current direction on the n.f.c. was in a right-handed
sense relative to the local B-lines. This assumption is clearly not generally true since the
behaviour of B near a n.f.c. can be dictated by the current density far from the n.f.c. Recognizing
this shortcoming, Hide (1981) introduced certain ‘control surfaces’, the main effect being to
replace the n.f.cs by n.ls of both O- and X-types. However, this novel approach does not seem
to fully account for the contribution of the X-type n.s and, for the O-type n.ls, must again
assume (jy), # 0, as in the other non-steady n.l. proofs.

As an alternative approach, Hide & Palmer (1982) have more recently attempted to extend
the Cowling n.l.n. proof to the non-steady case. To this end, (2.17) is integrated over a n.l.n.,
which is small enough for the diffusion term #V2%y to dominate the advection term Rv:Vy
throughout. An argument is then made that if the n.l. current remains zero, then y becomes
undifferentiable as ¢— oo, which is a ‘contradiction’. However, a requirement that y be
differentiable at ¢ = 00 would seem to be a constraint imposed additionally to the fundamental
electromagnetic equations. (Many physically useful well behaved functions, for example
(14 %)~ 1, have discontinuous limits.) It would be preferable if it could be shown that y became
undifferentiable in a time span of physical relevance, i.e. in a finite time.

It is unnecessary to make special assumptions concerning (j4), or = 00. Such problems can
be overcome mathematically by using modern versions of m.ps, in ways similar to Lortz &
Meyer-Spasche (1981), who showed that

X(t) = max|y|

Voo

is a strictly monotonically decreasing function of time. This result is also a simple special case
of the comparison function method used later herein (§4.2). However, even if one accepts that
X(t) decreases, none of the aforementioned arguments show that X(¢) decays to zero. In
considering the behaviour of X(¢), note that the location (which may not be unique) of X(¢)
may change discontinuously as the role of absolute maximum passes from one relative
maximum of |y| to another. According to (3.1) this can only occur by X(¢) decreasing to some
existing relative maximum of |y|, not by any relative maximum of |y| increasing. Corre-
spondingly, X(¢) is possibly only piecewise continuously differentiable, and until proven
otherwise X(¢) may decay towards a non-zero value, with the remainder of y evolving under-
neath. Smaller relative maxima (minima) of y may occasionally appear due to y falling (rising)
at surrounding points. These relative extrema may approach a limit (not yet shown to be zero),
or just disappear, but when present must always decay apart from instantaneous inflexions.

One might argue that (3.1) and (3.2) incorporate the symbiotic nature of currents and fields
and do indicate, in a loose sense, that the rate of decay of the field is dependent on the field
strength, and therefore the decay of X(f) must be zero. Such reasoning is far from sound. It
is true that the field near L, determines the current there according to (3.2), but the converse
is false: the field near L, is determined by the entire current distribution, and a more global
argument is required. We doubt whether any argument to establish decay of ¥ can be local
in the extreme sense of a purely n.l. argument.

If the right side of (3.1) contained an undifferentiated term —py,, then one could
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immediately infer that y, decayed to zero at least as fast as exp (—pt). This style of argument
has been previously used (Ivers & James 1981) to place an upper bound of five free decay times
on the decay of a general (i.e. non-axisymmetric) poloidal field supported by spherically
symmetric radial motions. When no undifferentiated term is present in (3.1), the task of
bounding the decay (or growth) time is more difficult. Hide & Palmer (1982) argue, using order
of magnitude estimates of (3.1), that y decays to zero on the diffusion timescale. This argument
disregards the behaviour of y away from the n.l., and seems only to be valid if ¥ decays to
zero away from the n.l. at least as fast as the free decay rate. To highlight the counter-possibility,
suppose x satisfies (3.1) throughout a disc of radius e transecting the n.l. and y = exp (—pt)
(for simplicity) on the boundary of the disc at time ¢ Then y will decay to zero inside the disc
provided p > 0. But if p < 0, y will not decay to zero. In any case the long-term behaviour
of y is determined by the scale-time max {1/|p|, €2/%}, not just the diffusion time €2/%; and p
is determined by both fluid motion and diffusion away from the n.l.

By using integral methods, several results associated with decay to zero have been established
under restricted conductivity—compressibility conditions. In the simplest case of constant o and
incompressible flow the proofs of Cowling (1957) and Braginskii (1964 ) show strictly monotonic

ixle= ([ xear). (3.3)

This result may be extended to decay to zero by using variational inequalities in a similar way

decay of

to Braginskii (1964), who remarks in a footnote that the decay time when V is a sphere, can
be shown to be no longer than the poloidal free-decay time 7,,,, = 2. The preciseness of this

bound 7, has not been proven, and it seems that the optimum bound must lie between 7

pol pol
and the longer bound 47 ,,, given by Backus (1957). Backus kas proven strictly monotonic decay

1
letxll, ={| px2dV),
|4

where p is the mass density, with a decay time no longer than 47

to zero of

po1- Backus’ result is important
in that it holds not only for uniform incompressible fluids, but also for variable o and
compressible flow, albeit with the assumptions that:

(i) Vis a sphere;

(ii) p and k = pn are spherically symmetric, i.e. dependent on 7, ¢ only;

(ili) —4k <rdk/dt < 0;

(iv) 3k+dk/dr > 0 on §S.
Backus argued that these conditions were approximately valid for the Earth. Under the same
assumptions Backus (1957) also showed that the decay time of the external dipole moment M,

was again no more than 47, in the sense that

pol>

lim et jooMl dt=0
t—>00 t
for all A < 1/47,,. The bound 47, seems to definitely contradict the earlier numerical result
of Chandrasekhar (1956) that even for an incompressible fluid with constant o, fluid motion
might extend the decay time by a factor of 20 or more (see Backus (1957), p. 503).

As mentioned in §2, the coupling term (vyB, A) has usually been neglected in previous
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considerations of the azimuthal component of B. When this is done in a uniform incompressible
fluid, certain decay results can definitely be established from (2.23) (now with
¢ = (v4By, 4) = 0). First, Backus (1957) has constructed an ingenious temperature analogue.
Backus concludes that max {|A4|} in V(¢) decays strictly monotonically to zero with decay time
no greater than the poloidal free-decay time 7, = 2. (There are several errors in Backus’
arguments (on his pp. 515-517), but happily the proof seems repairable (Backus, personal
communication) and his decay time conclusion valid. For example, Backus’ equation (40) omits
a non-trivial line integral along the z-axis, but in retrospect this integral can be shown to be
always non-positive, a property that allows successful modification of Backus’ ensuing
arguments.) Also, as for y, certain integral results are definitely established. The proofs of
Cowling (1957) and Braginskii (1964) (also corrected by addition of a non-positive axis

||A||2=(j Ade)g
14

decays strictly monotonically. Again, variational inequalities allow strengthening of this result
to decay to zero, and thus Braginskii (1964) has remarked, again without proof, that when V
is a sphere the decay time of || 4|, is no longer than the toroidal free-decay time 7, &~ (1.43w)™?
(1.43m being approximately the first positive root of the spherical Bessel function 7, (x)). It seems

integral) show that

probable that the correct optimum decay bound lies somewhere between the bounds 7., of
Braginskii and 7,,) of Backus. The only detailed consideration of the influence of (vy By, 4) (still
in a uniform incompressible fluid) appears to be that of Childress (1969), who used Schwarz
and variational inequalities in an attempt to modify the Braginskii analysis. Childress concludes
that || 4[|, decays (not necessarily monotonically) to zero on the 7, timescale, while assuming
there exists constant £, such that

fV (0, B ) AV < ki I x1 141l

Given the formulae (2.15) and (2.255) for (v,B,, 4), the existence of k; seems equivalent to
bounding ||Vy|l, by || xll,; which is the adverse of the usual variational relation, || ||, < &5 [Vx|l,,
and not generally possible. (For example, when y is the nth degree free-decay mode in a sphere,
it may be shown that ||Vyll,/llxll,—> o0 as n—00.) However, Childress’ conclusion is correct
and may be established without assuming the existence of &; (Ivers 1984).

Evidence against maintenance of A4 by compressible flows is much less substantial. Even if
neglect of (v;B,, 4) is reasonable, (2.23) still contains the undifferentiated term ¢4, which, as
simple heat flow analogies illustrate, may act as a source term. Pointwise decay or otherwise
of 4 must be expected to depend on ¢. When (v, By, 4) is omitted and 7 is constant, (2.23) is
equivalent to equation (18.4) of Parker (1979), who, in spite of the presence of ¢4, describes
the equation as source-free, and very heuristically argues for the decay of B,. Parker (1979)
also claims the volume integral of 4/p decays, but this does not seem to follow directly from
his equation (18.4) unless p is constant (in which case ¢ is zero) and 4 non-negative. More
recently, for a non-uniform compressible fluid, Lortz & Meyer-Spasche (1982 5) conclude that
“the toroidal field cannot grow in time’. What Lortz and Meyer-Spasche actually prove is that
if Vis convex (in the sense that dw/0n = 0 on ), and if the generation term (v B,, 4) is absent,
then

41, < P(2), (3.4)

13 Vol. 312. A
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where ||4|, denotes jV |4]dV, and P(¢) is some undetermined monotonically decreas-
ing positive function. Care must be taken with the interpretation of (3.4). Unless one can
show further that P(co0) = 0, or that the two sides of inequality (3.4) are equal at some finite
¢, then the most one should conclude is that |4, does not grow without bound, and that
|A], < P(c0) att = oco. If Vis not convex (for example, a torus) the Lortz and Meyer-Spasche
derivation of (3.4) requires modification as indicated by (5.30) in §5.5.

As indicated by the previous discussion, various senses of decay may be contemplated, and
one sense does not necessarily imply another. Indeed, it is not even obvious that the decay of
X to zero implies the decay of B, (which depends on Vy) or other field parameters. (The
expression exp (—¢) sin{exp (x+¢)} is a simple example of a function that decays to zero, but
has a space gradient that does not.) Such problems are the basis of the ‘spiky’ and ‘irregular’
fields contemplated in figure 1 of Backus (1957) and perhaps on p. 319 of Cowling (1955).

Thus various questions have yet to be answered. (a) Does y decay to zero? () If so, how
can it be proven that B, and other meridional field parameters, such as external multipole
moments and energy, decay to zero? (¢) Does B, decay to zero? (d) What are the decay rates?
(¢) Can the coupling term (vyB,, 4) be rigorously accounted for? (f) Is spiky behaviour
possible?

We will consider all of these questions in the following sections. Our basic approach for the
meridional field will be to show that y is dominated by specially constructed ‘comparison
functions’, which decay uniformly to zero in time. This method was suggested by a decay
theorem for certain parabolic boundary value problems on finite domains proven by Friedman
(1964). The results have immediate temperature problem analogues and can be extended to
more general convective—diffusive problems involving elliptic and parabolic differential
equations in adjoining domains. The problem for the azimuthal field is simpler in that the
domain V is finite, but complicated by the presence of the undifferentiated term ¢4 and the
coupling term (v, B, A) in (2.23). It seems necessary to at least partially use an integral method
that can take into account the divergence form of (2.26). With the principal exception of §5.5,
we avoid using boundary conditions on v, so that most of our results apply to non-velocity
mechanisms such as the Nernst-Ettingshausen effect (see also Ivers & James (1981)).

4. DECAY OF THE MERIDIONAL FIELD
4.1. Comparison theorem for the flux function

Decay to zero of the flux function y is proven by constructing a ‘comparison function’ u that
decays uniformly to zero in V, and such that |y| < u. We will assume, to begin with, that u
has continuous first derivatives in V_, except possibly for the z-axis; and continuous second
derivatives in V, except possibly for the z-axis and S. These conditions may be relaxed as, for
example, in extensions E.3, E.4, which follow the theorem.

THEOREM. If, with & and P as in (2.20), (2.18),

Eu<0 inV; (4.1)
Pu<0 iV, (4.2)
u>|x| at t=0; (4.3)
uz0 as w—>0 or r—>00; (4.4)

then u = |x| in V for t = 0.
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Proof. Let the space supremum of y—u at time ¢ be .# (). Most of the following proof is
concerned with showing that #(¢) < 0 for all £ > 0.

If M occurs at w = 0 or r = 00, then # < 0 by (2.16) and (4.4). Otherwise, ./ is just the
space maximum of the continuous function y —« and occurs on some time-dependent ‘neutral’
(i.e. maximal) circle N, in ¥, ¥ or on . Consider these three possibilities.

(i) N, liesin V, @ # 0, r # oo. By relations (2.19), (4.1) and the linearity of &,

E(x—u) =0 inV. (4.5)

By a maximum principle for elliptic inequalities (P.W., theorem 5, p. 61), y—u= .#
throughout V, in which case .# < 0 by (4.4) and (2.16). (Note that V is connected and must
cut the z-axis by §2.1(i).)

(ii) N, lies on S, @ # 0. By a second maximum principle for elliptic inequalities (P.W.,
theorem 7, p. 65) applied to (4.5), either (a) y —u is strictly decreasing at N, in any direction
into V, in particular

O(y—u)/on <0 on N, (4.6)

or (b) x—u = M in V. Case (a) is impossible since, by the continuity of V(y —u), there would
exist points near N, but inside V, where y —u exceeded .#, contradicting the definition of /.
So only () is possible, in which case # < 0 by (2.16) and (4.4).

To summarize arguments (i) and (ii): if ./ is attained in ¥ or on S where @ # 0, then it
is attained at all points of S U V, and # < 0 by (4.4) and (2.16).

(iii) The only remaining possibility is that N, is in V, where relations (2.17), (4.2) and the

linearity of 2 imply
P(x—u) = 0. (4.7)
Since N, is strictly inside V,

Vix—u) =0 and Viy—u) <0
on N,. Therefore, by direct substitution into (4.7),
O(y—u)/0t <0 on N, (4.8)

The location of N, like that of L, in §3, may change with time, perhaps even discontinuously.
But for situations of physical interest .# (¢) will presumably be at least piecewise differentiable
with respect to ¢. With this presumption — see remark R.2 following, otherwise — (4.8) implies
that . (t) is a non-decreasing function of ¢ while N, is in V. The non-positivity of .#(t) can
then be simply determined by tracing the location of N, backwards in time. Two possibilities
must be considered. (a) N, isin V at t= 0. Then .#(0) < 0 by (4.3), () N, moves into V at
time 7> 0, either by a smooth or sudden transfer from S U ¥ (including @w = 0). Here
A (f) < 0 by earlier arguments ((i), (ii) and preceding remarks for w = 0). It then follows from
(4.8) that .# remains non-positive for both cases () and (), while N, remains in V.

In all cases .# < 0 and thus ¥ < «. Finally, since the preceding arguments apply equally
well to — y in place of y,

x| <u, t=0. (4.9)

Remarks

R.1. In cases (i) and (ii) of the proof it was necessary to omit the z-axis, since one of the
coefficients in & is unbounded as @ — 0. The theorems quoted from P.W. then apply to suitably
restricted regions about N, (P.W., remark (i), p. 64). The unboundedness of V also causes no
difficulty (P.W., remark (ii), p. 64).

13-2
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R.2. The comparison theorem could alternatively be proven by considering the space-time
maximum of +y—u rather than just the space maximum. Since the space-time maximum
is a space maximum, most of the proof remains unchanged. However, argument (iii) dealing
with N, in V can then be replaced by an application of a maximum principle for parabolic
differential inequalities (P.W., theorem 5, p. 173). Such an approach is more general since the
presumption of piecewise differentiability of .4 (f) used in the present proof can be omitted.
This alternative style of proof is illustrated in detail in §5.2 for 4.

Extensions

The comparison theorem can be extended in several useful ways, which we note here for

future reference.
E.1. If u; and u, satisfy (4.1), (4.2), (4.4), and if u; > y and u, = —y at t = 0, then

—u, <Y<y, t=0. (4.10)

E.2. Suppose #(t) does not occur at @ = 0 or r = o0 for any ¢. Then, as argued earlier,
N, must be in ¥V and inequality (4.8) holds. Suppose that the space maximum ./ (¢)
remains constant during the time interval ¢, < ¢ < ¢,. Then # is the space-time maximum
of y—u in this time interval and it is attained by y—u at an interior point of V. By a
maximum principle for parabolic differential inequalities (P.W., theorem 5, p. 173) applied
to (4.7) this is not possible unless y —u = .4 in [t,,t,] throughout V (V is connected), and
by continuity and case (ii) of the proof for the comparison theorem, throughout V. Thus
if y—u# /A at any time ¢, O(y—u)/0t can be zero on N, no more than instantaneously.
So A4 must be strictly decreasing. In particular, #(¢) <.#(0) for ¢>0, and
correspondingly, since .#(0) < 0, inequalities (4.9) and (4.10) can be strengthened to

¥l <u, ¢>0; 4.11a
X

—uy <)y <u, t>0. (4.115)

E.3. Continuity of 0(y —u)/0n across S is used only to argue that N, cannot lie on S. The
argument actually only requires O(y —u)/0n < 0 on N, if Njison S. The argument would validly
proceed if, for examples, 0(y—u)/0n < 0 everywhere on (both sides of) S; or merely if
sign {0(y —u)/On} was continuous at N,, not necessarily negative everywhere on S, but, by the
outward derivative theorem already quoted in (ii), definitely negative at N, when N, is on .
Thus 0u/0n or 0y /0n, or both, may be discontinuous across S. This allows a wider choice of
comparison functions, and is also used later in §6, G.1 to allow the possibility of a discontinuity
in the permeability across S. Similar extensions hold for u,, u, in E.1.

E.4. Itis not necessary that 0%z/0r® be continuous across r = 1. The proof of the comparison
theorem is readily modified by dividing V into two regions, ¥, where r < 1 and V, where r > 1.
Provided sign {0(y —u)/0On} is continuous across the surface $ and on r = 1, N, must lie in V
and the comparison theorem remains valid. Similarly, 0?4/0w? may be discontinuous across
w = 1 provided sign {0(y —u)/On} is continuous across $ and on w = 1.

4.2. Comparison functions for x: decay to zero

The usefulness of the comparison theorem is that it replaces the difficult problem of solving
equations (2.16), (2.17) and (2.19) for y by the comparatively simple problem of solving
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inequalities (4.1)—(4.4). In this section we will show how to systematically construct comparison
functions u that decay to zero with increasing time. The comparison theorem then implies that
x must also decay to zero, and asymptotically at least as fast as u. However, it will be seen that
these comparison functions decay extremely slowly for large R. We also give some simple
comparison functions that reproduce and strengthen the results of previous authors, but which
do not prove decay to zero nor indicate a decay rate.

4.2.1. An axisymmetric comparison function that decays to zero

Consider
Y(0) F(w) e™?¢,
u =
F

<1, (4.124)
Y(0)F(1) e, @ >

1, (4.12)

Y(0) > 0, F(w) = 0, p > 0, to be determined. We will rely on extension E.4 of the comparison
theorem of §4.1, and not require 0%/0w? to be necessarily continuous at w = 1. Consider the
conditions of the comparison theorem in turn.

Condition (4.1) is satisfied in V, where w > 1, since &u = 0 there, and in V, where w < 1,
if

2
j—w—i—égé 0. (4.13)

Also,

d*F 1 dF dF dF
— oDt — = —
Pu=e P Y(0) {77 (d 5 3 +Kd +/\) (9 + Ro,) q + (pF 77/\)},

where A, k are yet to be specified. Thus condition (4.2) is satisfied if we choose F, «, p such

that for w < 1
dF S dz2F 1 ﬂf dFf

0, So—— i 4.144,b

dw > do? wdw de A, ( a,6)

k= sup {—%, } p< inf {@} (4.14¢, d)
V,t>0 Uj V,t=0 F

The zero in (4.14¢) is to ensure that « > 0 even if v, > 0 always. This latter posibility can only
occur if ¥V never intersects the z-axis and § is always moving. Apart from this extremely remote
but concgivable possibility, k may simply be thought of as a magnetic Reynolds number based
on v,. The non-negativity of « will be needed later. Given (4.144), conditions (4.3), (4.4) are
satisfied if we choose Y(0) = max{|y|/F(w)} at t = 0 and

F(0) > 0. (4.15)

(F(0) = 0 is also a possibility, as will be seen later.)

For decay, p must be positive. And since F'is positive by (4.144) and (4.15), equation (4.144)
requires A > 0 for decay. For simplicity, let A be a positive constant. (Many other choices of
A have been explored but to no significant advantage.) Then (4.13) is satisfied if (4.144, §) are,
since k = 0. A solution to (4.14a,b), (4.15), chosen with dF/dw =0 atw =1, is

F(w) = F(0)+AF,(w), (4.16)
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where for w < 1,

@ (1
E(w) = f f %e"(’l‘l’) d"] dp
o (4.17)

= ;15[(1 +«w) e *? {Ei(kw) — Ei(x)} + Ei(k) —In (k@) — kw —17].

Equation (4.16) holds for all w if we define K (w) = K (1), w > 1.
In (4.175), I

Ei(x) = —d
1(x) f_w L dx
is an exponential integral (Abramowitz & Stegun 1972) and y = 0.577... is the Euler
constant.

Since max F' = F(1), the maximum p satisfying (4.14d) for a given A, and unknown functional
form of 9, is p = A/F(1) > 0. It follows from the comparison theorem that

~array < X(0) —A¢/F(1
x| < Y(0) F(w) et/ ()SWF(I)C 1E@, (4.18a,b)

Increasing A clearly increases the decay rate, but in (4.185) also increases the amplitude of
the bounding function. An ‘optimum’ bounding function may be found by taking the envelope
with respect to A.

Let 1ltp
T = f f ;exw—p) dypdp = «k?{Ei(k) —Ink —k — 1},
o Jp

so that (1) = F(0) 4+ A7. Bearing in mind that A > 0, the envelope of (4.185) with respect to
A, is X(0) E(¢; 7) where

1, t<T,
. _ 4.1
E(t;7) =1t 1y ‘> (4.19)
T

The initial decay time of this envelope (i.e. the e-folding time) is approximately 37, whereas,
for t » 7, the decay time is approximately 7. By advancing the time origin, it follows that X(¢)
decays monotonically to zero irrespective of compressibility or variable conductivity, and the
decay time is bounded approximately by 7. Correspondingly, |y| decays to zero, but not
necessarily monotonically, and everywhere

lxl < X(¢) < X(0) E(¢;7). (4.20)
From (4.184a) it follows that the function

Y(t) = n;ax{lxl/F(W)}

satisfies Y(£) < Y(0) e A/FD,

and by advancing the time origin, we conclude Y(f) must decay strictly monotonically to zero
for all A > 0. In particular, letting A— 00 shows that

Y,(0) < %(0) e, (4.210)

where F(0) = max (/£ () (4.215)
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and Y, (#) decays strictly monotonically to zero. The same result (4.21) arises if the limiting case
F(0) = 0 is considered in place of (4.15). But some care is needed since F(0) = 0. Obviously
(4.21a, b) are only meaningful if /{(w) does not increase faster than y, that is faster thanO(w?),
for small w (see (2.164)). However, exp{«(7—p)} = 1 since k = 0, p < 9. So (4.174) implies
F(w) 2 w*(1—2Inw)/4 > }w?, and thus Y| (¢) defined by (4.215) is finite (taking, of course,
the appropriate limit as @ —0). In terms of y, (4.214,5) imply

x| < Y,(0) E, (w) et < ¥,(0) re~tF", (4.224, )

which, for ¢t > max {7,72Y,(0)/eX(0)}, is a tighter bound than (4.20). Since K, (w) = O(w) for
small w, (4.224) is also tighter than (4.20) for sufficiently small @ and all ¢ > 0. Grouping
together our uniform bounds, we conclude

X(0), t<T, (4.23a)
xl <{ x(0) éel“h, 1>, (4.234)
Y,(0) E(w) et 1320 (4.230)

((4.23a) will be strengthened to strict inequality for ¢> 0 in §4.2.3. This implies, by
advancing the time origin, that X(¢) decays strictly monotonically.)

The uniform bounds in (4.23) can be immediately integrated, to prove, for example, that
lxll, (see equation (3.3)) decays to zero, albeit not necessarily monotonically. It should be
appreciated that uniform pointwise bounds like (4.23) generally have an advantage over
integral results, in that for large ¢ the former rule out the possibility of spiky behaviour, either
in space or time, of y. On the other hand, a decay result for || y||,, for example, does not preclude
spikes in y. (If the spatial width of the spike—0 as t— 00, then so too may its contribution
to |lxll,, regardless of the spike height.) Note, however, that (4.23) does not preclude spikes
in the components of B, which need further analysis as in §4.3 and §4.4.

For given k, 7 may be evaluated with standard series expansions for Ei to obtain

0 Kﬂ—2

T = 2 - (424(1)
n=2 Pt
« 1 2l
= ;15[%{1 +%+72<—2'+ O(%)}—ln K—K—'y], for large «. (4.245)

Table 1 shows 7 in the range 0 < x < 100.

TaABLE 1. MAGNETIC REYNOLDS NUMBERS K, K, AND ASSOCIATED DECAY-TIME BOUNDS 7, 7,
FOR THE MERIDIONAL FLUX FUNCTION Y

K, Ko T Ty
0 0.25 0.25
1 0.32 0.29
2 0.42 0.33
5 1.3 0.56
10 25 1.9
15 1x103 9.6
20 6 x 104 62
50 4 x 106 3x107
100 3x10% 5x 1017
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In general v, takes both positive and negative values, so that « > 0. For the
exceptional case of an expanding star, where v, is everywhere non-negative, avoidance of mass
sources requires v, = 0 at w = 0, and correspondingly « = 0. Similarly, for free decay, v = 0,
and again k = 0. For both of these cases (4.244) gives 7 = 3. (Recall from §2.2 that the time
unit is a®/#,, where a is an upper bound for the radius of V and 7, a lower bound for .) Given
that V is possibly time-dependent and otherwise quite general (see §2.1(i)), and that o is
variable, this value of 7 is remarkably close to the theoretical (lowest poloidal mode) free-decay
time 7., = 72 for a sphere of uniform conductivity and unit radius. (Indeed, 7 &~ 2.57541")

On the other hand, for k > 1, (4.24b) gives 7 ~ k7 3¢* > 1. (For example, 7 >~ 3 x 1037 when
k = 100, a value of k possibly applicable to the Earth (Moffatt 1978).) This result leaves open
the possibility that some axisymmetric dynamos may decay only extremely slowly on the
diffusion timescale. While this slow decay rate bound may sometimes be accurate, it will on
other occasions reflect an inadequacy in the chosen comparison function or the comparison
theorem. An obvious example is that of incompressible flow and constant o where, as
mentioned in §3, the decay rate bounds of several integral parameters (| x|, M,) of the field
are close to the free-decay rate, independent of the magnitude of k. For this special case, the
bounding functions in (4.23) are necessarily slack since (4.23) is independent of the fluid
dilatation rate V. It would clearly be desirable to construct a comparison function that has
a pointwise decay rate dependent not only on the ‘magnetic Reynolds number’ «, but also
on the fluid expansion rates. As yet no success has been attained in this regard. Some dramatic,
but still not completely adequate, reduction in 7 for large « (i.e. large R) can be obtained for
some cases by making additional assumptions on v, as in the following example.

4.2.2. An axisymmetric comparison function with v,/w assumed uniformly bounded

So far we have used only the continuity and boundedness of »; but the axisymmetry and
differentiability conditions (iii) and (v) of §2.1 imply v, /@ bounded for any finite ¢ In this
section we will assume further that v,/ is uniformly bounded for all ¢. We proceed in the same
way as for comparison function (4.12), but now replace « by «,@, where «, is a constant.
Analogous to (4.14b,¢), we choose

&*F_1dF P wiif_ -2 d = — R, 0
do* wdw O dw 0 " K°~W’Sl;£0 o }
Analogous to (4.17), we find
w lp
H(w) = f f S e =% dy dp (4.25a)
0Jo 7

= (26,) 7 [exp (— 3, w?) {Bi (3, 0%) — Bi (3,)} +Ei (o) —In () —y].  (4.250)

Analogous to the uniform decay bounds (4.21) and (4.23), we obtain

{X (0) E(t; 70), (4.264)
x| <

Y (0) Toetm, (4.266)
¥i(0) < F,(0) e, (4.27)
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where £ and Y] are defined by (4.19) and (4.214), but with F| as in (4.25) and

7o = Fy(1) = (260) ™ {Ei (bg) —In (o) —7} (4.280)
R (ko/2)" 7"
=13 (4.285)

"=
12, 2 222! 1
=-270[—e%o{1+K—0+ pe +0<K~g>}—ln (%KO)—)/], for large «,. (4.28¢)

Fork, = 0,7, = { ® 2.5 7, the same value as 7 when « = 0; and for small non-zero «, (4.285)
gives reasonable decay time bounds; see table 1. Whilst generally x, = « and a direct
comparison of 7 and 7, is not possible, table 1 shows that in those cases where k & «, then7, < 7.
Indeed, for large «, (4.28¢) gives much lower decay time bounds than 7 in (4.245). The bounds
are, however, still very large — 7, & 5 x 10'” when k, = 100 — and undoubtedly slack bounds

for incompressible flow and other special cases.

4.2.3. Other comparison functions and associated results

The choice u = X(0) satisfies conditions (4.1), (4.2), (4.3) and (4.4), and consequently, by
the comparison theorem of §4.1, leads to

lxl < X(0). (4.29)

By continuously advancing the time origin, it follows that X(¢) can never increase; the result
obtained by the n.l. argument in §3. This can be strengthened according to extension E.2 of
§4.1. Either (i) y = + X(¢,) at some time ¢, or (ii) x| < X(0) by (4.11). Since y =0 atw =0
and at r = o0, case (i) is only possible if y =0 at f,, in which case (4.29), with ¢,
chosen as time origin, implies y = 0 for all ¢ > ¢,. By continuously advancing the time origin,
case (ii) shows that X(¢) must strictly decrease, although not necessarily to zero, for any non-
trivial y. As mentioned in § 3, this result has been obtained independently by a non-comparison
function method by Lortz & Meyer-Spasche (1982a). This proves the assertion made in §3,
that the current density j, around the neutral line corresponding to X(¢) cannot be zero during
any time interval. Note that in steady conditions only case (i) is possible and hence the only
steady solution is y = 0. This proves the steady antidynamo theorem quoted by Lortz (1968),
and extends it to allow v /% to be discontinuous across S. (The proof of Lortz (1968) relies on
a theorem on generalized analytic functions in Vekua (1962), p. 154), which does not seem
to directly apply to x, due in part to the unbounded coefficient 1/w in equation (6) of Lortz
(1968); for details, see Ivers (1984). However, the a.d.t. used by Lortz may be proven either
as shown in this section or merely by quoting modern versions of appropriate maximum
principles for ellip'tic differential equations (P.W.; Gilbarg & Trudinger 1977).)

The choices #; = maxy(t=0), u, = —min (¢t = 0) satisfy (4.1), (4.2), (4.4) and the
requirements of extension E.1. Substitution into (4.10) gives the Backus non-amplification result

min y(t =0) < y(¢) <max y(t=0), ¢=0.
VCD V(D
Again, for non-trivial y, this can be strengthened by extension E.2 to

min (¢t =0) < y(¢) <max y(t=0), (> 0;
v

fe o) @


http://rsta.royalsocietypublishing.org/

e \

A A

JA

A

A
‘/\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

V4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

198 D.J. IVERS AND R. W. JAMES

and advancing the time origin shows that max y(¢) must strictly monotonically decrease, and
min y(¢) must strictly monotonically increase, but neither necessarily to zero without further
argument.

Finally we mention that one can construct spherically symmetric comparison functions
analagous to§§4.2 (i) and (ii), and determine functions F(r), F, (r) in place of F(w), F, (w). Indeed,
when § is a sphere of unit radius, one can even incorporate the velocity boundary condition,
v, = 0 on S, by replacing « by «,(1—7) (on the further assumption that v,/(1 —7) is bounded
in space-time). These spherically symmetric comparison functions yield similar, but usually
somewhat slacker, bounds than their z-independent counterparts.

4.3. Decay to zero of the external multipole moments and induction vector B, in V

The current-free and solenoidal conditions (2.10) and (2.7¢) imply the existence of ¥ such
that B=—V¥, V2¥ =0, in V. In that part of V where r > 1, ¥ is given by a spherical
harmonic expansion that serves to define the external multipole moments M (¢):

© M,(t
P = kz rk’“Jr(l)Pk(cosﬁ), (4.30)
=1

where P, is a Legendre polynomial. Alternatively, (2.19) can be solved for y in r > 1:

E(1)
%

X = By 1(cos0)sin 6, (4.31)

T M8

1T
where P ; is the Neumann form of the associated Legendre function (Chapman & Bartels
(1962), §17.2). M, and E,, can then be related by

1Y 1 dy

77090 rsinfor
Using (4.30), (4.31) and the property
dF;(cos0)/d0 = — B, ,(cos 6) (4.32)
one finds E (t) = M, (2)/k.

Substitution of this into (4.31), and use of (4.32) and the orthogonality property

n . (k+1)! 26
» P _ k+1)! 20
fo %, 1(cos@) P, | (cos @) sinfdb (F—1)1 2k+1

. 2k+1 ("
gives M, (t) = or ,

x(1,6,t) B, ,do. (4.33)
Now consider the Legendre expansion

1x3x..(2k—1)
2x4x...(2k)

1x 2k

B,(cosf) = X (2h—1)

{2cosk6+ 2 cos (k——2)0+...}. (4.34)

Differentiation of (4.34) and use of (4.32) yields the bound

1x3x%x...(2k—1) 1x2k
]P,MISk{ Txir . (20 (2+2X(2k_1)2+...)}, (4.350)
=kPB(1) = k. (4.35h)
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So, (4.33) implies

IM, ()] < (k+1) T X(2). (4.36)

Thus the multipole moments M, (f) must decay to zero no slower than X(¢) and no slower
than the bounds in (4.23). Equation (4.36) does not imply monotonic decay of |M,(t)|, but
for large ¢ does rule out timewise spikes such as those contemplated by Backus (1957, figure 1)
in the dipole moment M,.

In the region r = £ for any £ > 1, the expansion (4.30) for ¥ can be differentiated term by
term (since the resulting series are uniformly convergent). Thus

o0
DM pcost), B, = 5 el

=1 =1

B, =% B, 1(cos@).

k
Consequently, since |P,(cos )| < 1,
s (k+1) M ()]

IBrI < k§=:1 rk+2 ’
or, by (4.36) . )
(k+1) (k+dHm (6r2—3r+1)m
—_— = . 4.37a,b
B < B R () = S () (4.374,0)
Similarly, by using the bound (4.35),
6r2—3r+1)m
|Byl < i—ér—z(—r—:ﬁ:})———X(z‘). (4.38)
Finally, from (4.37) and (4.38),
2_
PP ARLS (4.39)

V2ri(r—1)3

which establishes the decay to zero of By, in r > 1, at a rate no slower than X(¢). Note that
the bound (4.39) is non-uniform in 7 > 1, owing to the term (r—1)3 in the denominator and
that (4.39) holds only in that region of ¥ where r > 1. An alternative bound that holds
throughout all ¥ can be derived by using an a priori interior estimate for elliptic differential
equations. The details are notationally complicated and therefore deferred to Appendix B, part

(@), where it is shown

|B,| < CX({)/wd inV, (4.40)

where C is a constant and d is the shortest distance from the field point to $ U {w = 0} at time ¢.
Equation (4.40) shows that B, decays no slower than X in V, but, as in (4.39), the amplitude
of the bound in (4.40) is again non-uniform, being unbounded on § and the z-axis. This
behaviour on the z-axis is due to the unbounded coefficient in the operator &.

4.4. Decay to zero of By, in V and of the current density j,

In an analogous way to (4.40), an a prior: interior estimate for parabolic partial differential
equations applied to (2.17) provides non-uniform pointwise decay bounds on B, and the
associated azimuthal electric current density j,. As shown in Appendix B, part (4),

K
. 1+2
luosol < K () Xu=p, >34 (4.42)
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where K is a constant and 4 is the shortest distance from the field point to S U {w = 0} during
the interval (¢t—1, ¢). Since X(¢—) decays to zero by (4.23), it follows that both B, and j, decay
to zero in V—{w = 0}. Together, (4.40), (4.41) and (4.42) preclude the possibility that any
spikes in By, or j,, such as contemplated in § 3, might persist for large ¢ inside V' U V—{w = 0}.
However, the non-uniformity of the bounds (4.40), (4.41), (4.42), caused by the presence of
@ and d in the denominators, prevents us from concluding decay to zero of j; on S, or of B,
on § and the z-axis (of course, j; = 0 at w = 0). We conjecture that this is a technical difficulty
awaiting appropriate mathematical resolution, rather than being any manifestation of ultimate
spiky behaviour on § or {w = 0}.

4.5. Decay to zero of the net absolute surface flux

A quantity of considerable interest because of its use in testing whether the geomagnetic
secular variation can be regarded as the product of core-surface motions in a ‘frozen-in’ field
approximation (Backus (1968); Booker (1969)) and in the associated estimation of planetary
core radii from magnetic observations (Hide (1978); Hide & Malin (1979)) is the net absolute
surface flux

F =f B-dS)|.
s
By (2.15),
fi—znfl 9"ﬁId (4.43)
- o | Os 5 ’

where s is the meridional arc length along § measured from the highest point, and /is the length
of the intersection of § and any meridional half-plane {¢) = constant}.

Equation (4.43) shows that & decays to zero if and only if 0y /0s decays to zero almost every-
where. But decay of # does not follow from decay of y alone, unless further assumptions are
made.

One probably reasonable assumption is that the number, N(¢) say, of null-flux curves (where
B, = 0) on S is finite for finite . (For the Earth, N is about three at present (Booker 1969).)
Then, by using the flux interpretation of y it is simple to show that

F < 4nN(l) X(1).

So, provided N does not increase as fast as {X(£)}7!, # will decay to zero. If N is bounded,
& will ultimately decay at least as fast as X(¢), and at least as fast as indicated by the uniform
bounds in (4.23).

One can use (4.37) to bound the net flux through spheres enclosing S, one particular
application being to spherical core-mantle systems. Here, r = 1 would correspond to the
boundary of the conducting core, and by (4.37) the net absolute flux through the non-conducting
mantle’s surface, r = b > 1, satisfies

2m2(66% —3b+ 1) X(1)
(b—1)

F < -0 as t—>o00.

(For a mantle—core system the size of the Earth’s, 5 = 1.84 and the preceding bound reduces
to # < 530 X(¢).)
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5. DECAY OF THE AZIMUTHAL FIELD
5.1. Prologue

We will first consider decay of 4 similarly to our treatment of y. However, a new comparison
theorem is needed since 4 = 0 in ¥ and on S, and since the induction equation (2.23) for 4
contains source terms as discussed in §3. Indeed, it will not be possible to treat the source term
(vy By A) precisely. But rather than neglect it entirely we will, as a first approximation, model
it by an uniformly decaying function. We emphasize this as an assumption since although
§4.3 and §4.4 showed that B, —>0 as t - 00, it has never been proven that B, >0 uniformly
in space. Specifically, we hereinafter assume the uniform bound

IRB,,V(,/m)] < a(0) C(1), (5.1)
where 0<C(t) <o, Clt)~>0 as t->o0, (5.2)
and a(0) > 0, is a constant that we specify later. Introducing & (t) = max[4| at time ¢, we
assume & (0) # 0. If &7 (0) = 0, then either 4 remains zero if (v,By, 4) = 0, or non-zero 4 is
generated by differential rotation acting on B, . For the latter we simply advance the time origin
conveniently so that &/ (0) # 0.

Since a new comparison theorem is needed, we will take the opportunity of illustrating the
alternative parabolic maximum principle proof mentioned in remark R.2 of §4.1.

5.2. Comparison theorem for the azimuthal field A = B,/

THEOREM. Suppose w is continuous in V and has continuous first and second derivatives in V, excluding
the z-axis. If, with 2 and ¢ as in (2.23)—(2.25),

(24c)w < —a(0)Ct) inV(t), t=0, (5.3)
w=|Al mV, att=0, (5.4)
w/0w <0 asw—>0, (5.5)
w=0 ons, (5.6)
then Al <w @ V(E), t=0.

Proof. Let ¢, be an upper bound on ¢, as in (2.284), and let
Z = (A—w)e %"
Then equation (2.23) and inequalities (5.1) and (5.3) imply
{24 (c—c )} Z = 0. (5.7)

We proceed to show that Z < 0in V(f), t = 0.

Since Z is continuous, its space—time maximum M(7) on the compact set VU S(¢),
0 < ¢t < T exists. We assume that M(7T) is positive for some 7 > 0, otherwise there is nothing
to prove. Clearly, M(T) cannot occur in V(0) by (5.4) or on § by (2.27) and (5.6). On the
z-axis, 0Z/0w = 0 by (2.22) and (5.5). Application of an appropriate boundary derivative
maximum principle for parabolic differential inequalities (see remark following) shows that if
M(T) occurs on the z-axis, then AM(¢) also occurs at an interior point of V at time ¢, where
0 < 1< T. Finally, if M(T) occurs in V(f) then it follows from an appropriate maximum
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principle for parabolic differential inequalities that Z = M(T) in V(t), for all  where 0 < ¢ < 1.
Hence, by continuity, Z = M(T) in V(0) and on S(¢) for 0 < ¢ < ¢; and this, according to (5.4),
(2.27) and (5.6), contradicts our assumption that M(7T) > 0. Thus M(T') cannot be positive
for any T, and hence w = 4 in V(f) for all £ > 0. A similar argument shows that —w < 4 in
V(¢) for all t = 0, which completes the proof of the theorem.

Remark. The ‘appropriate’ boundary derivative and maximum principle theorems required
by the above proof stem from theorems 5, 6, 7 and associated remarks of P.W. (pp. 173-175).
These P.W. theorems do not apply directly to the case considered here, owing to the occurrence
of an unbounded coeflicient 3n/w in 2 (see equation (2.24)). However, as noted elsewhere
by P.W. (see their remark (iv), p. 170), results such as theorem 5 are still valid when the
coefficients in the differential operator are merely bounded in all closed subsets of V — {w = 0}.
This is certainly true of 39/w. That the conclusion of theorem 6 of P.W. remains valid is rather
more fortuitous, being dependent on special features of the problem here, namely axisymmetry
and the fact that # > 0. These features ensure that the sign of the unbounded term disturbing
the proof of P.W. (p. 171) is such as to preserve the conclusions of the proof. (An alternative
way to circumvent the unboundedness of 35/® is to write 2 in terms of a five-dimensional
Laplacian (Backus & Chandrasekhar 1956).) Theorem 7 of P.W. is a straightforward extension
of theorems 5 and 6, following from the fact that ¢—¢, is bounded and non-positive:
¢ € c—¢g < 0 by (2.28).

5.3. Comparison function for A: conditional decay to zero
Proceeding as far as possible analogously to §4.2, let us consider
w=a(0) G(w) H(t). (5.8)

Since

2
(24¢)w = a(0) {7; (d—G-+ 3 g—(—;—K-:—g-l-/\)H

do?' wdw

o\ ,,dG d
+(77K—va+ég)H—&1—D—+ (¢cG—nA) H—Gd—lj},

where k, A are yet to be specified, inequalities (5.3), (5.5) are satisfied if we choose

ﬁG_ Eg_G___Kd_G.——_A = va a(ln’))) 0 9a. b

do T wdw Ydwm " KT VSI:EO 7 0w’ }> (5.94,b)

dG/dw <0, H>=0, (5.10a,b)

and —GdH/dt+ (¢G—nA) H< —C(b). (5.11)

The zero in (5.95) is to ensure « > 0, which will be used later. But this zero is unnecessary
if V intersects the z-axis (where v, = 0/0w = 0) at any time {. Furthermore, if we also choose

HO)=1, G(1)>0, «0)=max{|4|/G(w)}, (5.12a,b,¢)

t=0

conditions (5.4), (5.6) are satisfied.
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Analogous to (4.16), (4.17), a solution to (5.94), (5.10a), (5.125), obtained by assuming
A = 0 and by choosing dG/dw = 0 at @ = 0, is

G(@) = G(1) +AG,(w), (5.13a)

where
G,(w) —f ?([ P e"‘”dp)dg (5.1356)

Since 9 = 1 by (2.11¢), inequalities (5.104) and (5.11) are satisfied if

dH A _ o .,
Ti—t—-l"(a‘zo—)‘CS)H——(l—)—C(t), say,

which, taking (5.12a) into account, implies
H=e {1 +J: C'(s) e ds}, (5.14q)
where q=A/G(0)—c,. (5.14b)
Thus, given (5.2), H—>0 as t->00 if ¢ > 0, i.e. if we can find a non-negative A such that
A > G(0) cq. (5.15)

Substitution from (5.134) shows that (5.15) can be written as

G(1) ¢
A= l_csTl(K) ’
provided ¢ T1(K) < 1, (5.16)
where 7,(k) = G,(0) = j ;(f pie*P dp) dé. (5.17)

If condition (5.16) is violated, then g is non-positive, and the most we can conclude is that
H(f) grows no faster than e/’ If condition (5.16) is satisfied, and if C(f) decays with
characteristic time 7., then H(¢) ultimately decays with a characteristic time max (74 7.).

In principle, one might take the envelope of the comparison function defined by (5.8), (5.13),
(5.14), with respect to the parameter A, but for general C(f), no simple formula is obtained.
Summarizing the application of the comparison theorem, we have

t

4] < a(0) G(w) e_q‘(l +J C1(s) e ds), (5.18)

0
and decay of 4 follows contingent on condition (5.16). This condition is most obviously satisfied
(i) when the dilatation rate V- » and diffusivity gradient 05/0w are small, so that ¢ is sufficiently
small; and (ii) when ¢g < 0.

If ¢, < 0 (i.e. 209/0w < RV -v; see (2.25)), then (5.16) is trivially satisfied, and any A > 0
will give decay to zero of 4. The most obvious application is to an incompressible uniform
fluid where ¢, = Vv = d5/0w = 0. Then ¢ = A/G(0) = 0 and (5.954) reduces to

k = sup{Rv,/n, 0}.
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If, in addition, (vyB,,4) = 0, then analogous to (4.18)

4] < 2 (0) G(w) e /GO :Z%G(O) e N/GO), (5.19a,b)
Letting A— 00 in (5.194), and also taking the envelope of (5.195) with respect to A = 0 yields,
analogous to (4.22), (4.23), the bounds

,(0) G (w) e7/m, (5.204)
[4] <{ o, (0) 7, et/ (5.200)
< (0) E(t; 7y), (5.20¢)

where a,(t) = max{|4|/G, (@)} over V(t). Here E is as in (4.19) and has decay time 7, given
by (5.17). For ¢t > max{7,,73a,(0)/esZ(0)}, (5.20a,b) are tighter bounds than (5.20¢); and
since G,(1) = 0, (5.204) is tighter than (5.20¢) for w sufficiently close to 1 and all > 0. (In
the same way as for (4.23a), it is similarly possible to extend (5.20¢) to see that o7(¢)
decays strictly monotonically.)

In the very special case of free decay of a uniform conducting fluid, C(f) = R = « = 0, and
from (5.17) 7, = }, not far removed from the toroidal free-decay time for a sphere of constant
diffusivity and unit radius, namely 7,,. & (1\43n)"? & &. Thus, merely changing to non-

spherical shape canot extend the free-decay time by more than a factor of about 2.5.

The preceding special case indicates that the comparison function defined by (5.8), (5.13)
and (5.14) probably gives reasonably accurate decay bounds for sufficiently small R, fluid strain
rates and variations in 9. However, the method fails when « » 1. For, as shown in Appendix
A, 7,(k) ~ 6¢e/k®; and, from (2.284), ¢, increases linearly with R. Thus, for large «, and hence
presumably large R, (5.16) will be greatly violated. Bearing in mind (§3) that for a uniform
incompressible fluid sphere, and when (v, By, 4) = 0, Backus (1957) has shown that o/ (¢) decays
to zero at no slower than the poloidal free-decay rate 7., regardless of the size of k or R,
it is clear that in certain cases the comparison function of (5.8), (5.13) and (5.14) is grossly
inadequate for k > 1. A comparison function depending on the fluid dilatation rate V-z as
well as the ‘Reynolds number’ k would be preferable, but no success has been had in this regard.
Analogous to §4.2.2, some improvement (i.e. reduction in 7,) for large x can be achieved by
making the further assumption that v,/® is uniformly bounded, but we omit the details.

Asin §4.4 and Appendix C, we can obtain Schauder-type a priori estimates for the space—time
derivatives of 4, and hence, in particular, derive a conditional decay result for the meridional
current density j,, = uy 'V x (Awe,). Details are left as a non-trivial exercise for the more-
mathematically inclined readers (or see Ivers 1984). Here we merely give the result

iml <2 {max |4+ RX(— D)} + - max |,
0 V- Ho vty
where d is the same as in (4.41) and K’ is constant, and from which decay follows corresponding
to the decay of 4 and y.

5.4. The rate of change of ||A||,: decay when (vyB,, A) =0

To strengthen our decay result for 4, it is necessary to take into account the special divergence
nature of (2.26). An integral method is suggested.
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At any time ¢, V(¢) is divisible into toroidal sub-volumes ¥, ({ = 1,2,...), in which 4 does
not change sign. Let the surface of these volumes be S,(¢). Let [, = V; N {w = 0} if it is not
null; and let S, be an associated small cylindrical surface of radius €, such that S, 7, as ¢ 0.
Note that

|[Al=0 and 0|4|/0n <0, onS, (5.21a,b)

(the outward normal derivative here being formed from the inside of S;). From (2.26) and
(5.21a),

Ml 4y - limf {lZV(wz |4]) — Ro IAl}-dS-—sign (4) f (v B A) AV,
y, Ot 0 J g+, \@ v,
0|4 .
= ﬂ—én—dS—éln 7|4l dz—sign(A4) | (vyBpA)dV. (5.22)
s, I v,

By using (2.27) and summing (5.22) over / we calculate the rate of change of |4, while
allowing for the motion of S:

d _ [ ol4] f )
dtfv |A|dV—fV 3 dV+ SIAIv ds
ol4| .
=2 9—-dS—4n| y|dldz— | sign(4)(v4B,,4)dV, (5.23)
1 Js, On I v

where 1=V N {w =0} (With such mechanisms as the Nernst-Ettingshausen effect in
mind — see §6, G.6 — note that since 4 = 0 on §, nowhere does (5.23) rely on v being interpreted
as the fluid velocity.)

The right side of (5.23) can be bounded above by using (5.2154), (2.114) and (5.1):

%f |[4|dV < —f sign (4) - (vy B, A) dV (5.24)
4 v
< $na(0) C(2). (5.25)
Thus
¢
fv [4]dV < UV |4] dV)t_0+§Tcoc(0) fo C(t) dt, (5.26)

which shows that ||4]|, is bounded above by

UV 4] dV)t=0+%1ta(O) f:o C(4) dt, (5.27)

which is finite if C(f) decays exponentially as expected from (4.41).

The preceding results can be strengthened in the absence of a meridional field or differential
rotation, when (v4B,,,4) = 0. To do this we must prove the impossibility of a non-trivial
toroidal field 4,, which, at any time ¢, > 0, satisfies both (i) 0|4,|/0n = 0 on §,, for all /; and
(ii) 4, = 0 on [, if / is not null; thereby making the right side of (5.23) zero. That 4, = 0 for
all space and ¢ < ¢, follows from the same parabolic boundary derivative and maximum
principles used in the comparison theorem of §4.1, but here applied to the function
Z = —|Ay| exp (—c4t), which satisfies (5.7) (with equality) in ¥]. The argument is quite simple:
Z < 0 in ¥V, and therefore takes its maximum (zero) on §; U /;. By theorem 7 of P.W. (p. 174),
it follows that either (iii) 0Z/0n > 0 on §; U [, or (iv) Z is constant for ¢ < ¢,. Conditions (i)

14 Vol. 312. A
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and (iii) are contradictory. Thus the only possibility is the implication of (ii), (iv) and (5.214),
namely Z = A, = 0for¢ < ¢,. Itfurther follows that 4, = 0 for all t by ‘integrating”’ (2.23) under
the trivial initial boundary conditions 4, = 0 at ¢t = ¢, and on S, U /; for all /, . We observe
then that the right side of (5.23) (with (vyB,, 4) = 0) must be strictly negative unless 4 = 0.
In steady conditions the left side of (5.23) vanishes, and thus the only possibility is 4 = 0. This
argument provides an alternative proof of the steady toroidal a.d.t. of Lortz (1968) with the
advantage of not requiring an existence theorem for the adjoint equation as done by Lortz.
In non-steady conditions the implication of (5.23) (with (v,B,, 4) = 0) is that any non-trivial
4]l must be strictly monotonically decreasing for all ¢. The obvious physical expectation in
the presence of (v By, 4), is that || 4|, will grow to some bound less than (5.27). And thereafter,
taking into account the decay to zero of (v, B,, A) ensured by (4.41), || 4|, will decrease. Note
that we have not yet proven that [|4]|, decays fo zero, even in the absence of (vyB,,4).
Furthermore, a decay rate for || 4]|, is not generally determinable from (5.23) because the right
side of (5.23) contains only surface and line integrals of | 4|, rather than volume integrals, which
would permit the use of variational inequalities.

5.5. A scenario for decay to zero of || A|, when (vyBy, A) =0

We conclude our discussion of 4 by outlining a ‘proof” of the decay of || 4|, to zero, which
relies on two assumptions, one of which seems reasonable and the other possibly so. We adopt
a factorization method similar to that used by Picard (see Courant & Hilbert (1962), p. 322),
and in generalized maximum principles (P.W., p. 8), and which is the foundation of the Lortz
& Meyer-Spasche derivation of (3.4). So let A = fg and choose

(2+¢)f=0. (5.28)
Then (2.23) is satisfied when (v, By, 4) = 0, if
(2+429VInf-V)g=o0. (5.29)

While V(¢) may be quite general as in §2.1(i), we add one additional constraint: that
O(Inw) /0n (or the appropriate limit as @ — 0) is bounded on §. This only excludes those V' that
meet the z-axis tangentially (for example the torus (w—w,)?+ 2% = w}), and is therefore not
physically restrictive. Choose a sufficiently smooth positive function A* > —23(Inw)/0n, and
suppose, denoting the volume ||1]|, by |V], that

o (, 20@
o= (h +— an)f on S, (5.30)

S=1/IV] at t=0. (5.31)

By application of maximum principles as in §5.2, f exp (—¢,f) cannot have a non-positive
space-time minimum (a) inside V(t) for ¢ > 0 by (5.28); (b) on S for ¢ > 0 by (5.30); or (¢)
at t = 0 by (5.31). Thus f'is positive for all £ > 0. The ability to choose non-zero % in (5.30)
is generally essential for part (b) of the argument, to ensure that the right side of (5.30) is
non-negative when f is non-positive. Equation (5.30) is a simple extension of the boundary
condition used by Lortz & Meyer-Spasche (19825), who omit 4, making their derivation of
(3.4) not valid for all V ‘topologically equivalent to a ball or torus’ (sic), but rather for convex
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large A? is chosen in (5.30). Other details concerning the derivation of (3.4) are essentially as
V where vwm/0n > 0 everywhere on S. However, (3.4) is more generally valid if a sufficiently
in Lortz & Meyer-Spasche (19824) and are omitted here. In this section we are considering
a much stronger result than (3.4).

Using (5.30) and the divergence form of (5.28) (see (2.23) and (2.26)), we calculate the total

rate of change of || f|, allowing for the motion of S:
ij de=f V'{—77—V(w2f)}dV (5.32)
dt )y v \@® ’ '

= -4nLnfdz~Lh%7fds, (5.33)

where I =V N {w = 0}, as in §5.4. It is essential in (5.32) that the motion of § be identified
with », and hence the results in this section do not apply to the Nernst-Ettingshausen effect:
see §6, G.6.

From (5.33) we can conclude d|| f||,/d¢ < 0 and hence || f||, < 1, but not that || ||, >0 as
t— 00. However, turning our attention to (5.29), the absence of a source term associated with
¢ gives some hope of proving decay of g to zero as was done for y in §4. We thus state a
comparison theorem for g.

TureorREM. If, with 2 as in (2.24) and [ determined by (5.28), (5.30), (5.31),

{2429VInf-Viw<0 inV,
w>=|g| att=0,
ow/0w <0 asw—>0,
w=0 ond,
then gl <w inV(E), t=0.

The proof is omitted, but is similar to and simpler than the proof of the comparison theorem
for 4 in §5.2. To construct a comparison function for g consider, analogous to (5.8),

w = B(0) G(w,«(f)) ¥,
where £(0) = max{|g|/G(w, k(f)} at t = 0, and proceed as in §5.3, but with ¢ = C = 0, and
equation (5.95) replaced by the inequality
K(f) > sup {%—M}—min {2M} (5.34)
V)

v,tzo U7 0w 0w

We again choose G as in (5.13), but with « replaced by «(¢). The possible time-dependence of k
stems from the presence of 0(Inf)/0w in (5.34), but we can choose « so that both x and
dk/dt = 0. Then (5.144) simplifies to ¢ = A/G(0) and any A > 0 gives decay. Indeed, noting
(5.31), we obtain, analogous to (5.20),

A (0) E(t; 1,)/|V], (5.354)

lgl <
B1(0) T €7, (5.355)

where £, (¢) = max{|g|/G,(w, k(t))}, analogous to (5.20), and where 7, is given by (5.17), with

14-2
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k replaced by «(¢). A sufficient condition for uniform decay of g to zero is 7,/¢>0 as ¢ > 00,
i.e. 1 £ () 3
[ ewtcn €=pn (8) apag o (5.36)

0 Jo
Since 0 < £—p < 1, a sufficient condition for (5.36) is «(¢) < In¢+ constant, or equally
sufficient by (5.34) 3(Inf)

2 oo = In(k/t) for large ¢, (5.37)

for any constant £ > 0. Since

4], < max g || f1, < max |g],
vt 0

it then follows that [|4||;—0 as {0, under the bounding curves in (5.35).

The two possible pitfalls of the preceding discussion are the assumption (a) that f exists
satisfying (5.28), (5.30), (5.31), and () that f also satisfies (5.37). Consider these in turn.

(a) Existence of f is assured when S is stationary (Friedman 1964, p. 144) and for some
moving boundaries (Friedman 1964, ch. 8). It seems reasonable to assume that fexists provided
$ changes sufficiently smoothly and perhaps slowly.

(b) Inequality (5.37) does not preclude steep gradients, but asks that negative w-gradients
do not develop faster than }1n (£/¢) for large ¢£. One might simply adopt (5.37) as a smoothness
assumption, but it would be clearly preferable to derive (5.37) from the differential equation
for f, and further work is needed in this regard. On some occasions it may be permissible to
expand

Sflr,t) = Ei:aifi(") exp (—Q,1), (5.38)

where €, is selected so that Re{€,} = minRe{Q;}. The general validity of (5.38) seems
mathematically difficult to determine, requiring spectral analysis of the non-self-adjoint
operator 2+ ¢. However, expansions such as (5.38) are commonly employed (see, for example,
the mean field dynamos examined by Roberts (1972)) in numerical solutions of the induction
equation when v and 7 are time-independent. In such cases, (5.37) is clearly satisfied since as
t—o00, d(Inf)/0w—0(Inf,) /0w, which is determined by the initial conditions and hence
bounded.

6. GENERALIZATIONS AND EXTENSIONS
G.1. Variable permeability
Since variable p is of little if any astroplanetary interest we omit most of the details and state
only the necessary modifications to be made to the results given previously for u,.

Suppose that x is axisymmetric and differentiable in ¥, V, but possibly discontinuous across
S. For the meridional field, the operators (2.18) and (2.20) are replaced by

27y 0
— 2_ vV _ .V — V——
P =9V ——Vo-V—yV(nu)-V—Rov-V a7

&= V2—§Vw‘V—V(ln,u)'V.

If we assume no surface currents, the standard magnetic boundary conditions are continuity
of the normal component of B,, and tangential component of B, /u. Equivalently, y and
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1~ 10x/0n are continuous across S. If we temporarily denote values on the inner and outer faces
of S by subscripts — and +, respectively, the comparison theorem of §4 is applicable under
y P P y p PP
extension E.3 if O(y —u)_/0n < 0 on any ‘neutral’ line N, which is on S. But, by the continuity
-1
of =" 0/ o 9 d p Ou, Ou_
= (p—u)- =B 2 () +E= TS

By the outward derivative theorem used in §4.1 (ii) (P.W., theorem 7, p. 65), 0(y —u),/on < 0
on any N, that is on $ (assuming y—u # .4 in V); and therefore d(x —u)_/On < 0 on such
an N, if
1 Ou, 1 Ou_
< —

e S (6.1)

Inequality (6.1) is simply satisfied in several physically relevant circumstances.

() When g is positive and continuous, any of the comparison functions of §4.2 may
be used since they have the property that du/0n is continuous.

(b) For a sphere of fixed boundary r = 1, the spherically symmetric comparison functions
mentioned at the end of §4.2 are applicable since they have the property du, /0r = Qu_/0r = 0
atr = 1.

For these cases uniform decay to zero of y follows with (4.14¢) replaced by

a(ln,u)} { O(ln u) va} ]
kK = max |sup{ ————p,sup{ ———————=, 0|.
[V‘,If{ o w7

Thus variable g cannot prevent decay of the meridional field, but does influence the decay
rate bound.

Modifications for variable permeability for A are slight. The comparison theorem and
function of §5.2 and §5.3, and condition (5.16) for decay to zero of 4, remain unchanged except
that 2, ¢, k take the new forms

2= 77V2+(g—7zew+V77—77Vln,u—Rv)'V—g, (6.2a)
w ot
20y ) )

K = sup
V,t>0

{%———a(ln n) Aoy 0}. (6.2¢)

i 0w 0w

Furthermore, the operator 2 +¢ retains its divergence form, the left side of (2.26) being altered
by addition of only one term — V- (94V Inu), which does not contribute to the integral results
(5.22) and (5.33). Thus the boundedness and decay results for || 4], in §5.4 and §5.5, remain
unchanged apart from a minor modification to x(¢) in (5.34) consistent with (6.2).

G.2. Inner core and mantle

Suppose that V contains a conducting sub-volume V,, surface S, across which v, o are possibly
discontinuous. The comparison theorem for jy in §4.1 then remains valid, although a new proof
isrequired (similar to §5.2 for 4), with consideration of a space—time maximum of + y —u rather
than just the space maximum. In particular, an outward derivative theorem for parabolic
differential inequalities (P.W., theorem 6, p. 174) is needed to preclude a non-negative such
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maximum occurring on .. (The P.W. theorem must be extended somewhat (see Ivers 1984)
to preclude the maximum occurring on S, at ¢ = T, the forward time boundary.) So none of
the results for y in §4 are altered by the presence of V, (be it solid or liquid). The methods
of §5 for A require more attention because 04/0n (unlike 0x/0n) is not generally continuous
at discontinuities (such as S;). The comparison theorem for 4 in §5.2 may be modified but
loses its practicality in that it is no longer generally easy to construct comparison functions as
in §5.3. However, the continuity across S, of the tangential components of E ensures (via the
Ohm law (2.8) and axisymmetry) the continuity of

2

n-{i—zv(’” A)—RvA+§3’iBm}. (6.3)
ow i3 w

This, in turn, ensures that no contribution from S, enters (5.22); and thus the conclusions for

the boundedness and decay of ||4]|, in §5.4 remain intact, indeed even if g is variable and

discontinuous across ;. All of the preceding discussion applies to any number of conducting

sub-volumes and, in particular, to conducting mantles and cores.

G.3. V and V multiply-connected or disconnected

Bondi & Gold (1950) argued (not assuming axisymmetry) that if V was perfectly conducting
(n = 0) and V ‘multiply connected, an external field can be caused to grow without limit’.
Contrary to this, Moffatt (1978, §6.3) has emphasized the vital role of diffusion (y > 0) for
sustained increase in the external dipole moment of B to occur; and Backus (1957, p. 521) has
remarked that his pointwise non-amplification and integral-decay results for y (see §3 herein)
for the axisymmetric dynamo have ‘nothing to do with connectivity’. None of the proofs of
§4 and §5 require ¥V and ¥ to be simply connected. They are valid when Vs a torus, for example.
But we did assume (§2.1(i)) that ¥ and V were pathwise connected. Connectedness of ¥ was
for simplicity only, all of the arguments herein apply equally well to each connected component
of a disconnected V. However, connectedness of ¥ and the boundedness V were together a
relatively unrestrictive means of ensuring that ¥ cut the z-axis. This, in turn, justified argument
(1) in the comparison theorem for y in §4.1 on which the main aspects of §4 rely, and ensured
(2.27), that A = 0 in V, on which the main aspects of §5 rely. Consider the alternative, that
Vis disconnected with a component W not intersecting {@ = 0}: for example, a non-conducting
toroidal cavity inside V. The comparison theorem for y, and hence all of §4, remains valid
regardless; but, again, the comparison theorem requires a space-time maximum approach as
in G.2. Also, as in G.2, the comparison theorem of §5.2 may be modified but becomes
impractical. However, by associating (6.3) in V with a tangential component of E, which is
continuous on the boundary of W, the integral results for 4 in §5.4 can be shown to remain
unchanged (even if x4 is variable and discontinuous), except that ||4|, is interpreted as the
integral of |A| over V U W rather than just V.

G.4. Conditional decay of By, x/w, and other parameters

One obvious question is whether or not the decay condition (5.16) for 4 can be removed
or relaxed by considering the induction equation for some alternative representation of the
azimuthal field, for example B,. The induction equation for B, is
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where
c=—a—(2)—RV-v+R”—"".
ow \w w

A comparison theorem similar to that of §5.2 is readily established with (5.5) replaced by the
condition w = 0 on w = 0; and comparison functions follow similar to those for 4 in §5.3. But
clearly, owing to the presence of the undifferentiated term ¢By in (6.4), decay of B only results
contingent on a condition similar to (5.16). This new condition is just as restrictive as (5.16)
and thus no significant advantage is achieved. One may also contemplate induction equations
for other representations of the azimuthal field, for example f(w) B,, and so generate a wide
class of conditional decay results. However, it does not appear possible to remove the need for
a condition like (5.16) by mere substitution. One could, of course, also consider alternative
functional representations of the meridional field, for example y/@, but then generally to some
disadvantage; the unconditional decay of ¥ in §4 being replaced by conditional decay, as in
§5 for A.
G.5. Charged exterior

The exterior of V may carry a steady axisymmetric electric charge density p,, all results
remaining unaltered. The electric field E is determined in ¥ from (2.75), up to the addition
of a scalar potential @, which is subsequently determined from V-E = p,/¢,, where ¢, is the
vacuum permittivity, and specification of the total charge in V.

G.6. The Nernst-Ettingshausen and similar effects

Hibberd (1979) proposed a geomagnetic field model generated by the Nernst-Ettingshausen
thermomagnetic effect as an alternative to a dynamo mechanism, and argued for long-term
maintenance against ohmic dissipation. For Hibberd’s specific model the poloidal field can be
shown to decay to zero with a decay time no greater than 57, (Ivers & James 1981).
Generally the Nernst-Ettingshausen effect is mathematically similar to a dynamo, the induction
equation (2.9) being altered only in that v is replaced by a thermomagnetic vector G parallel
or antiparallel to the heat flow. On the other hand, G does not generally obey the boundary
condition on v that represents no flow across §, so that a.d.ts cannot necessarily be directly
translated to the Nernst—Ettingshausen effect. However, with the exception of §5.5, and one
of the spherically symmetric comparison functions briefly mentioned at the end of §4.2.3, our
results do not rely on the velocity boundary condition. Thus, the pointwise decay to zero of
¥, the conditional pointwise decay of 4 to zero, and the strictly monotonic decay of ||4],, all
apply to an axisymmetric Nernst-Ettingshausen effect or equivalent mechanism.

7. SUMMARY

In §3 of this paper we critically reviewed axisymmetric, mainly non-steady, antidynamo
results. The strongest previously known results are for an incompressible uniform fluid
(Vv = 0; u, o constants), where it has definitely been established (Backus 1957) (i) that || x|,
(defined in (3.3)) decays to zero with decay-time bound 47,, = 4/%* and (ii) (with neglect
of the generation of 4 from y by azimuthal shearing (i.e. setting (v,B,, 4) = 0)) that 2 (¢)
(i.e. max 4] at time ¢) decays to zero with decay-time bound 7.

The bulk of this paper is concerned with much more general circumstances that allow
compressible flow, variable conductivity o, and moving boundary. In these circumstances
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established results are weaker. It has been known for some time (Backus 1957) that X(¢) (i.e.
max |y| at ¢) could not increase; and the strongest mathematical result not restricting V-v or
o is that X(¢f) must decrease strictly monotonically, but not necessarily to zero (Lortz &
Meyer-Spasche 1982). To strengthen these results we have used maximum principles for elliptic
and parabolic differential inequalities to prove a comparison theorem (§4.1). For our purposes
this theorem replaces the difficult problem of considering the equations that determine y (the
induction equation (2.17) 2y = 0 in V, the current-free condition (2.19) &y = 0 in V, and
boundary conditions) by the much simpler problem of solving corresponding inequalities
(Pu <0, 6u <0, and boundary inequalities) for a comparison function . The comparison
theorem states |y| < «; and we have demonstrated (§4.2) a systematic way of constructing
comparison functions « that decay exponentially to zero; all this not conditional on V-v,
variations in ¢, or moving boundaries. It follows that |y| decays uniformly to zero and X(¢)
decays strictly monotonically to zero (equation (4.23)). Concomitantly, all L-norms | x|/, and
certain other field parameters, such as external multipole moments (§4.3) and net absolute
surface flux (§4.5), decay to zero, but not necessarily monotonically. It must be realized that
various senses of decay may be contemplated and decay of one field parameter does not always
or simply imply decay of others. In particular, we have been forced to use considerable further
analysis involving Schauder-type a prior: estimates to prove that the meridional induction vector
B, decays to zero, and then the decay is not shown to be uniform in space (equations (4.40),
(4.41)). While this effectively removes the possibility of spiky behaviour in B, for large ¢, as
contemplated by some authors (see the concluding comments in §4.4), the possible non-
uniformness of the decay prevents concrete mathematical conclusions about unconditional
decay of integrals involving B, such as the internal magnetic energy | By |,/2p. Proof of
unconditional decay of the energy integral is thus an outstanding problem that, if possible, seems
to require different analysis and which we defer to a future time.

For the azimuthal field in compressible non-uniform non-steady conditions, nothing
substantial seems to have been previously established. Here we have proven by an integral
method that || 4], decays strictly monotonically ifgeneration by (v, B, 4) is absent. Otherwise, it
seems that || 4, may increase to a value determined by (v B, 4) before finally decaying, although
this is not established rigorously. In the absence of (v, B, 4) we prove (§5.5) the decay of || 4], is
to zero unless very steep gradients develop in In|4| for large ¢ (see inequality (5.37)), and
we are unable to totally exclude the latter possibility. By a comparison function method (§5.2
and §5.3) we also establish decay to zero of & (¢) conditional upon the diffusivity gradient and
dilatation rate being sufficiently small (condition (5.16)), and assuming (vyBy, 4) decays
uniformly to zero (equation (5.1)).

As by-products, our results do prove the impossibility of steady axisymmetric compressible
non-uniform dynamos. In such cases, our proofs offer small advantages over those of Lortz
(1968). (See the discussion in §4.2.3 and §5.4.)

Possibly our most important conclusion is negative. That is, despite considerable effort, we
have been unable to dismiss compressible axisymmetric dynamos as astrogeophysically
irrelevant. We have not been able to prove unconditional decay (i.e. without constraints on the
compressibility and conductivity) on timescales not greatly exceeding a diffusion time. For small
‘magnetic Reynolds numbers’ « (equations (4.14¢), the antecedent to (4.25) and (5.90)),
the decay times of the comparison functions are not greatly different (table 1) from a diffusion
time (based on maximum radius of J and minimum diffusivity). But for « 2 10, as is probably
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astrogeophysically relevant, the decay times of the comparison functions typically increase
subexponentially (like e*/k™, where a = ,1; and n = 2, 3, 5: see equations (4.245), (4.28) and
Appendix A). The resulting extremely large decay-time bounds are very slack in special cases
(for example, for incompressible uniform fluids). But the question remains open as to whether
extremely slowly-decaying compressible axisymmetric dynamos do exist and, in particular, with
compressibility of an astrogeophysically relevant magnitude. Investigations pertinent to this
question seem warranted in several directions, most obviously: () numerical computations with
physically plausible velocity models, for example, by extending the method of Bullard &
Gellman (1954) to compressible flows; (b) determination of astroplanetary relevant constraints
on compressibility with a view to application of conditional-decay theorems. (One arguably
very important attempt in this direction has already been made by Backus (1957).)

In §6 we have considered various generalizations and extensions. While these may be of little
astroplanetary interest, they serve at least to demonstrate the robustness of our main decay
results. That is, that X(#) decays strictly monotonically to zero and, when (v, By, 4) = 0, || 4[|,
decays strictly monotonically, even when the permeability u is variable; in the presence of inner
cores, mantles, or charged exterior, regardless of the connectivity of the conducting volume V;
and if the velocity v is replaced by the Nernst-Ettingshausen effect.

APPENDIX A. ASYMPTOTIC EXPRESSION FOR THE DEGAY TIME T,

Evaluation of the inner integral in (5.17) gives
16 6 3 1
= — (e ) ————— —
Ty (K) fo {K4g3 (e ) ngz KZg K} dg

- [ gt [ e [ (Gpvomt o o)

where 0 < ¢ < 1 and ¢ is fixed. The first integral is bounded by

6 . 6 3 1
Pl N W
which is O(k™*e*), as k- 00; and the third integral is bounded by
6 6 3 1
IO ST Wl 0
{K4€3+K3€2+K2€+K} (1=e),

which is O(x™1). Finally, we transform the second integral, by using { = 1 —£, to the Laplace
integral (Erdelyi (1956), §2.2)
6e”
ra

T gredg,

6e 3
+ —+...)
K K

This is the dominant contribution to 7, (k).

which is asymptotic to
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APPENDIX B. BOUNDS FOR THE DERIVATIVES OF Y

Here we establish decay to zero of the first and second order space derivatives of y by using
Schauder a priori estimates for elliptic and parabolic equations. (‘4 priori estimates’ are so called
because they can be derived from the differential equations even before existence of a solution
is established.) We will avoid notationally complicated details by transcribing appropriate
results from Gilbarg & Trudinger (1977) (hereinafter G.T.) and Friedman (1964) (hereinafter
F.).

(a) Interior estimates in V

Let Q(t) be the space domain consisting of all cartesian points x = (x,y, z) in V() excluding
the z-axis. Let d,, = d be the distance from x to the boundary 0€2, which consists of $(¢) and
the z-axis. Let d, , = min{d, ,d, }, and let D7y (x) be any one of the jth order cartesian space
derivatives of y.

THEOREM. Given equation (2.19) in Q, then

D2 _D2

S sup (@/|Diy()+sup a3z, PXB =TI < o ® 1)
i<2 20 o) loe, — |

Sor all Holder exponents o where 0 < a < 1, and constant C which depends only on a, not on & or ¢. (The

summation in (B 1) is over all space derivatives of order less than or equal to two.)

Proof. Since the coefficients of & in (2.20) are analytic in Q(¢), so is ¥ (G.T., theorem 6.17
and following remarks). Equation (B 1) then follows directly from theorem 6.2 of G.T. provided
we can show that the Holder norms

1) 1)

2x
242

2y
x4 y?

b
0,a;Q

>
0,0; 2

corresponding to the cartesian forms of the coefficients in (2.20), are bounded. By definition
(G.T., equation (6.10))

2x |
x2+y2 o,a;Qz 2t
where
2x }
s, =supi{d|——|7¢,
1 Q(tl)){ P
2x 2x
§, = sup 1d:e |x, —x,|™* 12 }
’ g(tlf{ T
Now since d < (x+y2)3, (B 2)
then 5y S sup [2x(x*+y%)7H = 2.

Q(t)

Also, since V is bounded, the equality in (B 2) is actually attained for points sufficiently close
to the z-axis and far from § (for example x < 1,y = 0, z > 2). Thus 5; = 2.
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To evaluate s,, introduce complex coordinates §; = x;+1iy; (j = 1,2), and suppose without
loss of generality that |§,| 2 |§,|. Then d, , <, and

*(e )

<2 Sup {8 =&t 181851 < 227

S5 < sup {|§2|1+a 18, —&ol™*2

Q)

Again, this bound is actually attained for certain points sufficiently close to the z-axis and far

from § (for example x;, = —x,, |¥| < 1, y, =y, = 0, z; = z,, |z| > 2). Thus 5, = 227* and
2x  |@
- =242%* < 6.
x2+y2 0,a; 2 =

Finally, by the axisymmetry of £,

(1) (1)

2x

2y
x2 + y2

x2 +y2

0,a; Q2 0,a; 8
Thus the relevant Hélder norms are bounded, theorem 6.2 of G.T. applies, and (B 1) follows.

COROLLARIES. By selecting appropriate single terms from the left side of (B 1), we obtain the bounds

d|Vy| < CX(t), d?V2x| < CX(f).

1 C
= — S — ,
Consequently |B| p- |V de(t)
which establishes (4.40).

(b) Interior estimates in V

Here let Q be the space—time domain of all cartesian points P(x, ) such that x lies in V(¢)
excluding the z-axis and 0 < ¢ < 7. Let 2°be the exterior of Q, and let 02 be that part of
the boundary of £ composed of V(0), the z-axis, and all surfaces S(¢") for 0 < ¢ < ¢. Define
the parabolic ‘distance’ between the space—time points P, F, by

d(B, By) = {(2,—2,)" + |t — 1]t (B 3)

Let dp be the minimum ‘distance’ from P to 02, and dp p = min{dp, dp}. Since r < 1 in Q,
d(P,B,) < (4+T)4 dp <}, and dp p < 3. Lett D7 represent space derivatives as in part (a).

THEOREM. Given (2.17) in £ and conditions (2.12)—(2.14) on 5 and v, then
j |Diy(P)—Diy(P,
3 [sup {(d4ID7x(P)l}+sup {dm DX (B) —Dx( 2>|}]
e U70F d(P, F)*

j<2L Q@

0 Ox(P)/ot—0ox(B,) /0
X sup fagg, RSB, o) (ng

+sup {43
S‘}F{ r d(P,, B,)*

JSor all Holder exponents o where 0 < oo < 1, and constant K which depends only on o0, T, 9y, 7,, K, K,,
K, and K (from (2.12), (2.14)).
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Proof. (B 4) is a specific application of results given by F. (theorem 5, ch. 3; theorem 1,
ch. 4; extension of theorem 1, p. 128), provided the Holder norms (F. equation (2.11), ch. 3)

2xm 2y
|77|ow Idvlaa ‘d<———) a) Id(x2+y2)

x%+y?
corresponding to the coefficients in (2.18) are bounded. Itis in bounding these norms that (2.12)
and (2.14) are important. For example, by definition,

)
o2

Inl, = Slép 19l +s5 = 1,/10+ 55,

ln(ﬂ)—v(&)l}.

where S, = sup 1d%
s gp{Plf’z d(P, B)*

The term s, requires careful attention; for, in general, it is quite possible that the space—time
straight line P, F, does not lie everywhere inside £. Thus, although 7 is differentiable inside €2,
it is not necessarily differentiable along P, F,. Correspondingly, it is quite possible to have P,
and F, close together but separated by intervening parts of Q. Then [n(P) —n(FB,)| is not
necessarily small and the boundedness of s, is questionable in the limit of P, being arbitrarily
close to F,. However, the weighting factor d% p, removes this possible unboundedness. For, if
part of separates £ form B, then dp p < d(P, ), so that

S < sup [9(B) = (B)l < m/no— 1.

Alternatively, if dp p, 2 d(P,, 1), then the convexity of the hypersurface d(P,P) = d(P,P,)
ensures that the straight line P, £, lies entirely inside . Then the mean-value theorem along
P, P, implies

0
sy < sup{|(va, S| 1m s, <)
Q

[P B e, if lt,—tl < 15
d(P,P)' ™, if |t,—t] =1,

< (K, +Ky) (4+ T2

< (K1+K2){

(Here, |P, B)| = {{x,—x,)%+ (¢, — ;)% as usual.) Thus
7le < 90/90+max{y,/n,— 1, (K, +K,) (44 T2},

loi(B) —vi(B)]
|dv,l, = sup {dplv,|}+ su {d”“ £ v
’&I Qp P z} Qp P, P, d(Pp})z)

< 1+ max{2, <K5+KG) (4+ Tz)é}‘

Similarly,

The two remaining Hoélder norms can be bounded as follows:

_27x 2y .
gl Yo by axisymmetry,
< sup {7} dﬁé , by axisymmetry and since 9 > 0,
Q Y la

< z—l (242*), from part (a).
0
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(This result differs from (@) in that equality alone cannot generally be taken since points
sufficiently close to the z-axis do not necessarily lie in V.)

COROLLARIES. By translating the time span _from [0, T'] to [t,, t] and redefining €2, 082 correspondingly,
(B 4) remains valid with the right side replaced by KX(t,), where K now depends on o, 54, 1., K, K,,
Ks, K, and the span t—t,. Then, by selecting appropriate terms from the left side of (B 4),

dplVx| < KX(4,), dEIVPxl < KX(4y),
implying 1Bl < KX(t)wdp, (B5)

and
Vo

w

KX(t,)
wds

lodl = | VX =22V | < IVEXI+ 2 V] < (1 +2dp) (86)

Since X(¢) is monotonically decreasing, (B 5), (B 6) tend to be optimized by taking ¢, closer
to t. To determine a convenient quasi-optimum #, let us briefly consider more closely the nature
of dp. Suppose that the smallest ‘distance’ from P(x,?) to the space boundary S U {w = 0}
during (¢, T') occurs at time #* when the boundary point #* happens to be spacewise closest
to x. Then

dp = min [{(x —x*)2 41— 1*}, (1—1,)%]. (B7)

Clearly, letting ¢, = ¢is no use, because then d, = 0 and the right side of (B 5), (B 6) are infinite.
On the other hand, since dp < 1, a simplification of dp results from choosing t—¢, = }. Then
(B 7) reduces to

dp = {(x—x* 2 +t—t*};

and it follows that dp > |x —a*| = d, where d is the minin. um space distance from x to the space
boundary at any time during [¢,, ¢]. This result and the choice ¢, = ¢t—} results in (4.41) and
(4.42).
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